Responsible Defense from Multi-Drone Attacks
PhD Final Defense

Tonmoay Deb
Department of Computer Science
Northwestern University

Committee Members:
Dr. V.S. Subrahmanian, Computer Science (Advisor and Chair)
Dr. Larry Birnbaum, Computer Science
Dr. Nabil Alshurafa, Computer Science
Dr. Alberto Quattrini Li, Department of Computer Science, Dartmouth College

December 8, 2025

Outline

© Introduction

© DEWS: Drone Early Warning System

© STATE: Safe and Threatening Adversarial Trajectory Engine
@ GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

© Conclusion

Upcoming Section

© Introduction

The Emerging Drone Threat

= @NN World Africa Americas Asia Australia China Europe India More - evaeh @ sen Q ([EElg senm

EEEEEEEEEEEEEEEEE

Investigations launched after more unexplained
drone sightings off two European coasts

By Tim Lister and Billy Stockwell

BN
The Emerging Drone Threat

Drone proliferation creates security challenges Notable Incidents
@ Terror groups actively use drones (ISIS, Hezbollah, e Gatwick Airport (2018):
PKK) 1,000+ flights canceled

e Saudi Aramco Attack (2019):

@ State-sponsored warfare (Ukraine, India-Pakistan $2B damage to oil facilities

2025) e Jammu Air Force (2021):
o Critical infrastructure attacks (Saudi oil refineries, First drone attack on Indian military
2019) o Ukraine Conflict (2022-ongoing):

Thousands of drone strikes on cities

e India-Pakistan (2025):
o Legitimate vs. malicious drone flights Drone warfare escalation

Urban environments face complex airspaces

@ Real-time threat assessment required

o Legal and ethical constraints on responses

Central Research Question

Overarching Challenge

How can autonomous systems defend regions from drone attacks while maintaining legal and
ethical compliance?

Four Core Research Problems:
@ Early Threat Detection: Distinguish threats from benign flights within seconds
© Data Scarcity: Generate realistic threat trajectories when real data is scarce
© Legal Reasoning: Make decisions that satisfy all applicable legal/ethical constraints
@ Adaptive Defense: Learn effective strategies while maintaining strict compliance

This dissertation makes significant progress towards each of these four problems.

L
Problem 1: Early Threat Prediction (DEWS)

Drone Threat Prediction Problem (DTPP)

Given the first j seconds of a live trajectory and drone metadata, classify whether the flight
will become threatening.

Motivation:
@ Security officials need actionable intelligence in 30 seconds
@ Limited observation data for decision-making
@ Must balance false positives (disrupting legitimate flights) vs. false negatives (missing
threats)
Our Solution: DEWS—Drone Early Warning System
@ First system for early drone threat prediction from partial trajectories
@ Achieves F; > 0.80 within 30 seconds of observation
@ Validated on real data from The Hague with Dutch police

7/48

L
Problem 2: Threat-Conditioned Trajectory Generation (STATE)

Data Scarcity Problem

Real threat trajectory data is scarce. How can we generate realistic synthetic data for training
and testing defense systems?

Motivation:
o Few real-world threat trajectories exist
@ Privacy and security constraints limit data sharing
o Need diverse scenarios across different geographic regions
Our Solution: STATE—Safe and Threatening Adversarial Trajectory Engine
@ cGAN-based architecture for threat-conditioned trajectory synthesis
@ Generates realistic trajectories over unseen regions
@ 35.8% improvement in Fl-score vs. baselines (expert validated)

8/48

L
Problem 3 & 4: Compliant Defense (GUARDIAN)

The Compliance Gap

Standard RL maximizes reward without considering legal norms. How can defenders act
legally while learning to be effective?

Motivation:
@ Must reason about complex deontic rules (obligations, permissions, prohibitions)
@ Need to ensure all actions are compliant before execution
@ Learn effective policies within the compliant action space

Our Solution: GUARDIAN—Governance-Unified Aerial Reinforcement-Defense
@ Uses deontic logic to specify drone warfare legal/ethical constraints
@ Leverages feasible status set computation algorithms from prior work
@ Integrates FSS-based action masking with multi-agent RL
o Counterintuitive finding: Compliance can improve defensive performance

9/48

Upcoming Section

© DEWS: Drone Early Warning System

DEWS: Problem Formulation

Drone Threat Prediction Problem (DTPP)

Given the first j seconds of a live trajectory 7 and drone metadata, classify whether the flight
will become threatening.

Formal Definition: Threat Thresholds:
o Trajectory: 74 = ((¢¢,t1),...,(¢9, tn)) o Low: score < 4 (61% of data)
e Temporal restriction: tr(74,J) @ Medium: score € [4,8) (27%)
@ Threat score: y(74) € [1,10] e High: score > 8 (12%)

o Learn: fi, : (d, tr(74,7)) — {0, 1}, where

Key Research Focus:
f(d,tr(r4,j)) = 1 if threat > lev

Analyze earliness vs. accuracy tradeoff
Observation Windows:

j € {1,5,10,20, 30, 60,180,360} seconds

11/48

- 00000 ocewsDowEaWammgSeem |
DEWS: Real-World Dataset (The Hague)

Dataset (provided by Dutch Police): Dataset Statistics by Threat Level
@ 8 months: Dec 2020 — Jul 2021
@ 349 trajectories from The Hague

Metric Low Med High

Trajectories 213 94 42
. Duration (s) 265 298 286
o 18 distinct drones observed Distance (m) 435 988 752
e Avg. flight: 5 min / 750 m traveled Altitude (m) 63 116 101
Speed (km/h) 7.1 146 104

@ Senhive RF sensors (25 km radius)

Expert Annotation:

@ Dutch police & municipality experts]
First real-world drone threat dataset
@ Inter-annotator agreement: xk = 0.772

(substantial)

@ Anonymized for public release

12/48

. DEWs:DroneEalyWemingSystem
DEWS: System Overview

assets Annotation Tool Feature Extraction Threat Classification

Basic [T [[[1] e
Drone Capability | | | [|]
Asses T[]
speea [T
Observation History [[| [[| |

A
I
I

Live

Low threat (yes/no)

Security Experts

Late
Fusion

33 Intermediate threat (yes/no)

trajectories
High threat (yes/no)

'
'
'
'
'
'
'
'
'
'
'
features subset B

. -

= models suit
Training data

Trajectory

Figure: DEWS Architecture. Data set preparation involves annotating asset values and drone trajectories by police.
Subsequently, DEWS extracts features and trains 11 classifiers My, --- , M11 to yield 11 predictions which are integrated
using late fusion to predict the final threat level. During operational use (after training), an initial part of a live trajectory
is processed to extract features, and the combination of single predictors and late fusion produces the final threat score.

. DEWs:DroneEalyWemingSystem
DEWS: Feature Engineering

Six Feature Categories (Total: 110 features)

@ Basic Flight Parameters @ No-Fly Zone (NFZ) Compliance
e Waypoint counts, duration e Intrusion flags
e Spatial spread, bounding box e Min distance to restricted areas
@ Drone Capabilities o % time in NFZ
o Max payload, battery capacity © Asset-Value Features
e Top speed, range e Max/mean/cumulative values
O Altitude & Speed Metrics e Ground asset importance
o Min/mean/max/percentiles O Historical Similarity
e Ground speed profiles e self and cross-similarity with past

trajectories

14/48

DEWS: Performance Results

Key Findings
© Rapid Early Warning
e F; > 0.80 after 30 seconds
o Precision > 90%, Recall ~ 75%
o Peaks at F; = 0.96 (6-min prefix)
@ Late Fusion Superiority

o Consistently beats all 11 base models
e Robust across observation windows

© Key Feature Insight

o Asset-value features are #1 predictor
o Where a drone flies matters

@ Operational Efficiency

e 3-second end-to-end latency
e Actionable time buffer for response

1 60 180 360 720
time threshold (s)

—8— adaboost —&— knn —8— random_forest
decision_tree logistic_regression svm

—0— extra_trees —e— mip —o— wide_n_deep
gradient_boosting naive_bayes late fusion

High-Threat F; score vs. observation window

15/48

. DEWs:DroneEalyWemingSystem
DEWS: Summary

Contributions:

o First system for early drone threat prediction from partial trajectories
@ Novel integration of geospatial asset values into threat assessment
@ Ensemble approach achieving 0.80+ F1 within 30 seconds

Practical Impact:
@ Enables proactive defense planning
@ Reduces operator cognitive load

@ Provides actionable time buffer for counter-measures

Limitation: Single-city dataset (The Hague) — Motivates STATE

16/48

Upcoming Section

© STATE: Safe and Threatening Adversarial Trajectory Engine

17/48

_ STATE:Ssfeand Threatening Adversarial Trajectory Engine
STATE: Problem Formulation

Trajectory Representation:

7= {w; = (latj,long;, h;) | j=1,..., M}

Threat-Conditioned Trajectory Generation
Learn a generative model G such that:

Q:(A,é,z)—m-

where A is any geographical region, e {0,1} is the target threat class, and z is a latent
noise vector.

Key Objective: Generate trajectories over unseen regions while preserving threat-specific
behavioral patterns learned from available data.

18/48

STATE: Data Representation Module

® FYY o Fy ® F

FA e RHXWXB

<>
Official Web Sources Security Expert OpenStreetMap

Figure: The target geographical region A is represented with a multi-channel feature tensor, including
the No-Fly Zone Map F\F%, the Population Density Map FfP, the Satellite Imagery F3!, the Street
Map F5T, and the Asset Value Map F4V.

19/48

STATE: Waypoint Generator

Waypoint Generator G: A
G:(F,0,z) = # € {0,1}1W

Architecture:
o CLIP-based encoder: F € RHXWx9 _, X c RD»
o Threat encoder: § — X; € RP»
o Latent noise: z ~ N(0,14) — X, € RP»
e Concatenation: X' = [Xr & X; & X;] € R¥D»

o Decoder: Transposed conv layers — 7 € {0,1}128%128

Trajectory Validity Discriminator MV : (7, F,0) — pY € [0, 1]
@ Distinguishes real from synthetic trajectories
@ Ensures generated trajectories match real data distribution

_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Threat Alignment Network and Training

Pre-trained classifier M ensures threat consistency (based on DEWS)

MT(#,F) = pl = P(B|7,F) €0,1]

@ Pre-trained threat classifier
@ Ensures generated trajectories match target threat label

o Fixed during generator training

Training Strategy:
o MYV is trained adversarially with G
e MT fixed during GAN training (not adversarial)
@ Provides auxiliary loss: L5 = Ay Ly v + ATL 7

_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Adversarial Training Dynamics

()

v
Lg }‘ """""""""""" !
R X Trajectory | ! v
< {0,1} ' > validiy | | ?f)e [0,1]
i ”| Discriminator
1 MV
> Waypoint % 7€ {0,1} W
zeR? > Generator . @ >
0 Threat
F, € REXWx9 : Alignment | _{7 €[0,1]
A I Network !
: '
€ femmmmmmme :

_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Trajectory Reconstruction Module

Challenge: Convert unordered planar projection 7 to temporal trajectory 7

Temporal Sequencing Process:

@ Identify contour Q of largest connected component in 7
Q={w,wy,...,w}

@ For all waypoint pairs (ws, we) € Q with d(ws, we) < &:
o Generate candidate trajectory 7 via stochastic random walk
o Creates set [= {m,ms,..., 7.} where L = (})

@ Select best trajectory using MT:

* T
— F
T = arg mwe:a[%(./\/l (m, F)

Altitude Assignment: Conditional on threat class 0 (drawn from the learned distribution)

STATE: Trajectory Reconstruction Visualization

et g e

Random Walk T
i arg max M" (-
Contour Detection Generator g o ()

MTJ

24/48

_ STATE:Safeand Threatening Adversarial Trjectory Engine
STATE: Comparison with Baselines

Evaluation Metrics (lower is better):
o MDE (Mean Distance Error): spatial accuracy

e SSIM (Structural Similarity): trajectory diversity
@ JSD-AV: asset value distribution similarity
@ JSD-TL: trajectory length distribution similarity
MDE | SSIM | JSD-AV | JSD-TL |
Method Threat Safe | Threat Safe | Threat Safe Threat Safe

Random Walk | 17.38 15.04 | 0.928 0.953 | 0.0065 0.0042 | 0.054 0.025
Monte Carlo 1540 1442 | 0944 0960 | 0.0051 0.0061 | 0.050 0.023

LSTM 525 319 | 0.882 0907 | 0.0045 0.0052 | 0.027 0.017
VAE 9.61 10.71 | 0.978 0.940 | 0.0025 0.0038 | 0.043 0.019
Traj-GAN 829 652 | 0.856 0.826 | 0.0040 0.0043 | 0.028 0.017
STATE | 127 1.62 | 0.661 0.664 | 0.0010 0.0020 | 0.015 0.005

Table: Lower is better. STATE achieves 75.8% improvement over LSTM on threatening trajectories.

_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Expert Evaluation on Unseen Regions

S etu p: Embedding Space of the Generated Trajectories
i i A L) R ® M-E Agree (T)
@ Generated 200 trajectories over unseen regions T vt
° L] . ° R ° O M-E Mismatch (NT)
@ 100 per model (STATE, VAE), 50 safe + 50 s et e e e
threatening gt .O I
@ Two Dutch police officers independently annotated i GRS P
F1-Score S I o o o
Method | 6 =0 =1 Acc. S S N
VAE ‘ 0.857 0.522 ‘ 0.780 ©-SNE Dimension 1
STATE | 0.888 0.709 | 0.839 t-SNE of STATE embeddings. Filled =
A | +3.6% +35.8% | +7.6%

model-expert agreement; Hollow =

disagreement.
Key Result: STATE generalizes to unseen regions with 35.8% F1 improvement on

threatening trajectories vs. VAE

_ STATE:Ssfeand Threatening Adversarial Trajectory Engine
STATE: Contributions and Limitations

Contributions: Limitations:
@ Novel cGAN architecture for @ Single-city evaluation (The Hague)
threat-conditioned trajectory synthesis e Binary threat classification
@ Dual feedback: realism + threat alignment ¢ Relies on pre-trained threat classifier
@ Outperforms 5 baseline methods o Dual-use considerations
@ Addresses data scarcity for rare threats
@ Enables testing in unmonitored areas

Next Challenge: Given threat detection, how should defenders respond? — GUARDIAN

Upcoming Section

@ GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

BN
GUARDIAN: The Core Challenge

The Compliance Gap in RL:
e Standard RL: 7* = arg max, E[reward)]
o Legal/ethical norms N\ are external

@ High-reward actions may violate laws

Blue HQ

Real-World Challenge:

o BLUE team (defenders) must comply with
norms

e RED team (attackers) ignores norms BLUE vs. RED scenario over Paris

@ Question: Does compliance disadvantage
BLUE?

BN
GUARDIAN: Motivating Example

Scenario

50 70 | 50 | 40 Legend:
°

(O Blue drone

50 | 60 | 20 50 (O Red drone

[J CCTV

5x5 urban grid

Green cells: civilian areas

60 40 90 Civilian area @ Values: infrastructure importance
? 70 60 ? Cell values: @ R1: Red drone in high-value cell
infrastructure _
importance @ B1, B2: Blue defenders
90| 80] 80 50 40 Ethical Constraints

@ Norm 1: No firing in civilian areas unless
immediate threat

@ Norm 2: Obligatory to fire when
high-value neighbors at risk

@ = Multiple feasible actions
30/48

BN
GUARDIAN Foundation: Deontic Logic Framework

Deontic Operators specify normative status of actions:

Pa Action « is permitted

Oa Action « is obligatory (must do)
Fa Action « is forbidden

Doa Action « will be executed

Deontic Rules encode legal/ethical constraints:
SA+—x & SA; & ... & S5A,

where x is a conjunction of state atoms

We’'ll see concrete examples on the next slide.

31/48

_ GUARDIAN: Governance-Unified Aerial Reinforcement-Defense
GUARDIAN: Deontic Rules

Example Rules for BLUE Drones:
@ Never fire at cells:
F FireAtCell 4(i,j) < Blue(d)

@ Prohibit friendly fire:
F FireAtDroney(d") <— Blue(d) A Blue(d') A SameTeam(d, d’)

© Prohibit firing in civilian areas (unless immediate threat):
F FireAtDroney(d") < Blue(d) A Red(d") A CivilianArea(i,j) A ~Immediate Threat(d")

@ Obligate engagement when neighbors are high-value:
O FireAtDroney(d") +
Blue(d) A Red(d") A ImmediateThreat(d") A AllNeighborsAbove(i, j, t, \)

8 total rules developed based on suggestions from security experts.

32/48

Status Sets

Status Set (SS): A set of ground status atoms specifying the deontic status of each action.
Example Status Set for drone d:

Ss, — P MoveTo4(3,4), Do MoveToy(3,4),
97\ P FireAtDroney(d'), F FireAtCell4(3,4)

Key Question: Is a status set feasible? That is, does it satisfy all deontic rules, constraints,
and logical consistency requirements?

33/48

L
Feasible Status Set (FSS): Definition

Feasible Status Set
A status set SSy is feasible if it satisfies all 8 conditions: J

@ OacSSy=PacSS; (obligations imply permission)

@ Oa € SS; = Doa € SS; (obligations must be done)

© Doa € SS; = Pa €SS, (done actions must be permitted)

©Q Pa €SSy =Fa¢SSy (no permission-prohibition conflict)

@ Pa € SS4 = preconditions of « satisfied (physical feasibility)

@ SS, is closed under operating rules Ny (rule closure)

@ {a | Doa € 554} satisfies action constraints AC (action consistency)
@ Resulting state satisfies integrity constraints IC (state consistency)

Key Output: The Concurrent Action Set (CAS):
Xssd = {a | Doa € 55,;/}

This is the set of actions drone d will actually execute.

34/48

From FSS to Dynamically Masked Action Space

Current State
Sa(t)

Integrity
Constraints

FSS

Set of CASs
Computation

{X1,Xo,...}

Deontic Norms

N

Action
Constraints
Result: Each CAS is a legally compliant combination of actions.
Dynamically Masked Action Space:
Ay(s) = {Xss | SS € Fq(s)}

The drone can only select from these compliant action sets.

35/48

BN
GUARDIAN: Integrating FSS with Reinforcement Learning

Use FSS computation to dynamically mask the RL action space.

RL with Dynamically Masked Actions
At each state s, the drone optimizes:

74 = arg maxE [Z Y Ry(s(t), X(t))
d t=0

Subject to: X(t) € Aq4(s(t)) at every step.

Result:
@ Infeasible FSSs are never explored during training
@ Infeasible FSSs are never executed during deployment
@ Learned policies are compliant by construction

36/48

BN
GUARDIAN: Learning Architecture

Two-Level Hierarchy:

@ Drone Level: Independent Q-Learning with action masking

Qa(sd, X) =E |Rg+~ max Qu(sy,X’)
X'eAy(s))
o HQ Level: QMIX for centralized training, decentralized execution

Qtot(sHQa a) = f(Qd17 sy Qdm; SHQ)

Key Property: Even HQ cannot override drone compliance.
@ HQ suggests actions; drones verify feasibility via FSS

o If HQ suggestion violates norms, drone substitutes feasible alternative

37/48

BN
GUARDIAN: Experimental Setup

Grid Configuration Blue:Red Ratios

o Grid sizes: 64x64, 128x128 e 1:1 (symmetric)

o Cell values: v;;(0) € [0,100] e 2:1, 3:1 (defender advantage)

@ 3 CCTV cameras (view range 10) e 1:2, 1:3 (attacker advantage)
Drone Parameters Training

@ Blue drones: 16, 32, 64 @ Deep Independent Q-Learning

o Battery capacity: 100 units @ QMIX for HQ coordination

o Payload: 3 units @ 5,000 episodes

o View range: 5, Fire range: 1 @ Stochastic communication (80%

success)

Metrics: Reward, City Protection, Win Rate, Q Values, etc.

GUARDIAN: Reward

600

1000 N

ASNREY Ly
G a P A

100 W s 3

750
200 — Compliance 00 — Compliance 1:1

- Compliance 2:1 - Compliance 2:1

++ Compliance 2:1
=== Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
I, No compliance 2:1
/% === No compliance 3:1 250

- Compliance 3:1
Compliance 1:2

Compliance 1:3

No compliance 1:1
No compliance 2:1
=== No compliance 3:1
No compliance 1:2

Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1

Value

~200

Value

-400
No compliance 1:2 No compliance 1:2
-~ No compliance 1:3 5 -~ No compliance 1:3 | -~ No compliance 1:3
600 Y -500 : .
% S R
! AWARTI AR YIS " A 1000 A
—8004 7 7 At e ‘ = LY. W, LSNP DY A e L RN N e [N e
\ ; e 750 1 | N 7 A AN Ao WAV LY ARV, -
\/ AR ; . -
~1000 1000 1500
1000 2000 3000 4000 5000 1000 2001 0 4000 5000 1000 2000 3000 4000 5000
Episode Episode Episode

Figure: 64x64 grid with 16, 32, and 64 BLUE drones

Three Critical Observations:

(Obs 1) Compliance generally worsens performance (expected)

(Obs 2) On 64x64 grid with 32 and 64 BLUE drones, compliance improves performance when RED drones are majority
(1:2, 1:3 ratios)

(Obs 3) Larger problems = compliance reward approaches or exceeds non-compliance

GUARDIAN: City Protection

Gompliance +1
Compliance 2:1

Compliance 1:1
a5 * Compliance 2:1 Compliance 2:1
Compliance 3:1 Compliance 3:1 85 ~-- Compliance 3:1
+ Compliance 12 | Compliance 1:2 Compliance 1:2
Compliance 1:3 380 - Compliance 1:3 200 Compliance 1:3
No compliance 1:1 = %, =— No compliance 1:1 3 g No compliance 1:1 |
No compliance 2:1 75 - No compliance 2:1 No compliance 2:1 |
No compliance 3:1 No compliance 3:1 75 No compliance 3:1°
No compliance 1:2 No compliance 1:2 No compliance 1:2 |
No compliance 1:3 70 “ No compliance 1:3 {| ~~- No compliance 1:3
e 70 v .
o LEATA
60 65
4 1000 2000 4000 50 0 1000 2000 4000 5000
pisode

A\ r o
WY
N

Compliance 1:1

-, AVAYAS
AL VN

Figure: 64x64 grid: 16, 32, 64 BLUE drones.

1000 2000 3001 4000 5000
pisode

Key Finding: Compliance improves city protection in most cases (up to 31.3% improvement)
Only 4 of 30 configurations show degradation.

BN
GUARDIAN: Compliance Cost Analysis

: . ___ Performance with Norms
Comphance Cost: CC = Performance without Norms

16 BLUE 32 BLUE 64 BLUE
B:R | 64x64 128x128 | 64x64 128x128 | 64x64 128x128

City Protection (higher = better)

1:1 0.860 1.025 0.967 1.044 1.156 1.165
2:1 0.962 1.012 1.082 1.196 1.209 1.283
3:1 0.980 1.083 1.152 1.214 1.187 1.313
1:2 1.041 1.025 1.076 1.092 1.120 1.106
1:3 1.109 1.009 1.076 1.032 1.076 1.093

Table: Compliance cost ratio: > 1 means compliance improves performance.
Key Findings:
e Compliance improves city protection in most cases (up to 20.9% improvement)
@ Only 4 cases show degradation (up to 14%)
@ Hence, deontic constraints often help rather than hurt defense

BN
GUARDIAN: Computational Efficiency

Per-Step Decision Time (ms)

Drones | Comp CAS QMIX
16 Yes 215.6 23.7
16 No 0 15.3
32 Yes 446.8 26.2
32 No 0 23.6
64 Yes 554.9 70.8
64 No 0 41.6

Observations

@ CAS computation: 2.6 increase (16—64 drones)

@ QMIX inference: 3x increase
@ Total: 625.7ms for 64 drones

@ Real-time capable

Training Time
@ 5,000 episodes, 64x64 grid, 64 drones
@ With norms: ~630 hours
@ Without norms: ~80 hours
@ Overhead: 7.9x for training
@ Acceptable for offline training

Key Takeaway
@ Training overhead significant
@ But inference remains real-time
@ Practical for deployment

@ Legal compliance worth the cost

42/48

BN
GUARDIAN: Summary of Findings

Counterintuitive Result:
Legal compliance does not necessarily handicap defenders

Key Insights:

@ Reduced Search Space: Constraints focus exploration on viable policies

@ Implicit Curriculum: Deontic rules guide learning for complex problems

© Asymmetric Advantage: RED faces full complexity; BLUE has structured search
@ Scale-Dependent: Benefits most pronounced at larger problem scales

© Practical Viability: 625.7ms decision time enables real-time deployment

Broader Implications:
@ Hard constraints can facilitate learning (not just constrain it)

@ Formal compliance guarantees achievable without sacrificing effectiveness
@ Challenges assumption that “tied hands” = tactical disadvantage

43/48

Upcoming Section

© Conclusion

44/48

Concluding Remarks

Central Message:

Regional airspace can be defended proactively and responsibly through integration of
prediction, legal reasoning, and learning.

Key Takeaway:
@ Legal compliance is not a handicap
@ Constraints can facilitate learning at scale

@ Formal guarantees + effectiveness are achievable

Interdisciplinary approach is essential

Vision:

Autonomous defense systems that are simultaneously effective, compliant, adaptive,
transparent, and subject to meaningful human oversight

This dissertation makes significant progress towards this vision.

45/48

Publications

o

2]

© ©

Deb, T., De Laaf, S., La Gatta, V., Lemmens, O., Lindelauf, R., Van Meerten, M., Meerveld, H., Neeleman, A.,
Postiglione, M., and Subrahmanian, V.S. “A Drone Early Warning System (DEWS) for Predicting Threatening
Trajectories.” IEEE Intelligent Systems, 2025.

Deb, T., Jeong, M., Molinaro, C., Pugliese, A., Quattrini Li, A., Santos, E., Subrahmanian, V.S., and Zhang, Y.
“Declarative Logic-Based Pareto-Optimal Agent Decision Making.” IEEE Transactions on Cybernetics, vol. 54,

no. 12, pp. 7147-7162, 2024.

Deb, T., Dix, J., Jeong, M., Molinaro, C., Pugliese, A., Quattrini Li, A., Santos Jr., E., Subrahmanian, V.S., Yang,
S., and Zhang, Y. “DUCK: A Drone-Urban Cyber-Defense Framework Based on Pareto-Optimal Deontic Logic
Agents.” Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Deb, T., Jeong, M., Molinaro, C., Pugliese, A., Quattrini Li, A., Santos Jr., E., Zhang, Y., and Subrahmanian, V.S.
“GUARDIAN: Governance-Unified Aerial Reinforcement-Defense In Accordance with Norms.” To be submitted.
Deb, T., Denisenko, N., Gao, C., La Gatta, V., de Laaf, S., Neeleman, A., Sola, L., and Subrahmanian, V.S.
“STATE: Safe and Threatening Adversarial Trajectory Engine.” To be submitted.

Mutzari, D., Deb, T., Molinaro, C., Pugliese, A., Subrahmanian, V.S., and Kraus, S. “Defending a City from
Multi-Drone Attacks: A Sequential Stackelberg Security Games Approach.” Artificial Intelligence, vol. 349,

p. 104425, 2025. (S2D2)

Jeong, M., Molinaro, C., Deb, T., Zhang, Y., Pugliese, A., Santos, E., Subrahmanian, V.S., and Quattrini Li, A.
“Multi-Object Active Search and Tracking by Multiple Agents in Untrusted, Dynamically Changing Environments.”
Autonomous Robots, vol. 50, no. 1, 2026.

46/48

Acknowledgements

Advisor Committee Members

Dr. Larry Birnbaum
Dr. Nabil Alshurafa
Dr. Alberto Quattrini Li

Lab Members

Valerio La Gatta
Marco Postiglione
Saurabh Kumar
Lirika Sola
Natalia Denisenko
Chongyang Gao

Dr. V.S. Subrahmanian
Northwestern University

Collaborators
Netherlands Police
(Sven de Laaf, Odette Lemmens)
Municipality of The Hague
(Max van Meerten, Iris Neeleman)
Dartmouth College
(Mingi Jeong, Eugene Santos Jr.)
University of Calabria
(Cristian Molinaro, Andrea Pugliese)
Chinese Academy of Science
(Youzhi Zhang)

Bar-llan University
(Dolev Mutzari, Sarit Kraus)

Special thanks to my wife and my parents for their unwavering support.

47/48

Thank You!

Questions & Discussion

Tonmoay Deb
tonmoay.deb@northwestern.edu

Department of Computer Science
Northwestern University

48/48

Backup Slides

Future: DUCK 3D Simulation Environment Testbed

Figure: Three-screen view: (L) Blue/RHQ commands, (C) Ground-truth Unreal rendering, (R) Sensor overlays + Ul

DUCK Testbed Architecture

Ensure that all
Agents execute all
actions at timesteps

Maintain parallel
Action Execution
Queue for Agents

POSS for each agent
POSS Drone 1

POSS CCTV 1

Calculate Pareto-Optimal
Feasible Status Sets

Drone, HQ, and CCTV

Behavior Constraints

Actions Event Driven

Controller

DUCK ROS
Decision Layer

AirSim DUCK ROS
API Control Layer

Translate calls to
3D Environment

Multi-Objective
Functions

Agent Program
with Deontic Logic

State Metadata POSS Red HQ

* Top-view
2D Map

DUCK ROS AirSim
Visualization Layer API

Control Agents

Use API to visualize
different properties

Fetch current state

of Env. and Agents via internal PID

3D Environment

Integrity Constraints (IC) & Action Constraints (AC)

Integrity constraints ensure system consistency and safety. They must hold in the resulting
state.

IC;: Engagement Within Firing Range

< FireAtDroney4(d’) A —InFireRange(d,d’)

“Cannot fire at a drone that is out of range”

Action constraints define permissible combinations of concurrent actions within a single time
step.

AC;: Single Target Engagement

< FireAtDroney(d1) N FireAtDroney(d2) N di # do

“Cannot engage multiple targets simultaneously”

S keS|
Computing Feasible Status Sets: LSS

Least Status Set (LSS) Algorithm: Computes the minimal status set that satisfies all
deontic closure conditions.
Key Steps:
© Initialize: Start with initial constraints (e.g., HQ orders)
@ Enforce deontic closure:
e If Oa € S5: add Pa and Do«
o If Doa € SS: add Pa
© Apply operating rules: For each rule whose body is satisfied, add the head
@ Check for contradictions:
o If both Pa and Fa exist: return L

o If Pa but precondition false: return L
o If denial constraints violated: return L

© Repeat until fixpoint reached

Output: Minimal baseline status set, or L if no compliant option exists.

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

1. DC < {denial constraints in AC}

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

1. DC < {denial constraints in AC}

2. LSSy + LSS(SSHg, Sa(t), N4, DC)

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.
@ Line 2: Compute Least Status Set via LSS (try with HQ orders first).

Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold
1. DC < {denial constraints in AC}
2. LSSy + LSS(SSHg, Sa(t), N4, DC)
3. if LSSy = L then LSSy + LSS(0, Sy(t), Ny, DC)

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.
@ Line 2: Compute Least Status Set via LSS (try with HQ orders first).
@ Line 3: If HQ conflicts with norms, retry without HQ orders.

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,

IC, AC, Actions A4(t), Threshold

DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, <+ LSS(0, S4(t), N4, DC)
. if LSSy = L then return L

PN

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,

IC, AC, Actions A4(t), Threshold

DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, <+ LSS(0, S4(t), N4, DC)
. if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

aprwWNR

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold
. DC < {denial constraints in AC}
. LSSy + LSS(SShq, S4(t), N4, DC)
. if LSSy = L then LSS, <+ LSS(0, S4(t), N4, DC)
. if LSSy = L then return L
Ay < {ag | Pre(ay) false OR Fay € LSSy}
. SAy +— SA(.Ad) \ (57:1 @]} LSSd)

oA WNR

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, + LSS(0, S4(t), Ny, DC)
. if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

. SAy +— SA(.Ad) \ (57:1 @]} LSSd)

SA4-Do + {Doay | Doay € SA4}

No o hwWN R

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
Lines 7-8: Key Step: Separate Do atoms from F/P/O atoms.

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

. DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, + LSS(0, S4(t), Ny, DC)
if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

. SAy +— SA(.Ad) \ (57:1 @]} LSSd)

SA4-Do + {Doay | Doay € SA4}

. SAd-FPO — SAd \ SAd-DO

ONO AW

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
Lines 7-8: Key Step: Separate Do atoms from F/P/O atoms.

NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions Ay4(t), Threshold 7

DC < {denial constraints in AC}

. LSSy + LSS(SSHg, Sa(t), N4, DC)

. if LSSy = L then LSS, + LSS(0, S4(t), Ny, DC)

. if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

. SAy +— SA(.Ad) \ (57d @]} LSSd)

SA4-Do + {Doay | Doay € SA4}

SAd-FPO — SAd \ SAd-DO

. Tolnspect + {LSS4U X | X C SA4-FPO}; Result + 0

COENSOOAWNR

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
Lines 7-8: Key Step: Separate Do atoms from F/P/O atoms.

Line 9: Initialize BFS frontier with all FPO combinations.

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.

Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.

Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do

11. Candidates < Tolnspect; Tolnspect < ()

12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.

Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do

11. Candidates < Tolnspect; Tolnspect < ()

12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do

14. Add FeasSet, to Result

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.

Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then

13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then

13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result

15. if |Result| = T then return Result

16. else

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
19. Add (Cand, U {Doay}) to Tolnspect
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).
@ Line 19: BFS: one Do atom per expansion step.

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
19. Add (Cand, U {Doay}) to Tolnspect
20. end while
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).
@ Line 19: BFS: one Do atom per expansion step.

NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
19. Add (Cand, U {Doay}) to Tolnspect
20. end while
21. return Result
v

Line 10-11: Loop until no candidates OR collected 7 feasible sets.

Line 12: Check feasibility against IC and AC.

Lines 13-15: Collect feasible sets into Result.

Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).

Line 19: BFS: one Do atom per expansion step.

Line 21: Return all collected feasible status sets Fy = {551,585, ...} — set of feasible status sets.
Each FSS yields a Concurrent Action Set: Xss. = {a | Doa € SS;}

7/39

o badwpSlides
POSS: Proof Overview

Three Key Complexity Results in POSS Chapter:
@ Proposition (Membership): Deciding if a status set is a Pareto-optimal feasible status
set is in co-NP
@ Theorem (Hardness): Deciding if a status set is a Pareto-optimal feasible status set is
co-NP-hard
© Proposition (Closure): The Closure algorithm runs in polynomial time

Why these results matter:
@ Establishes computational complexity bounds for decision problems
@ Justifies the need for heuristic algorithms in practice
@ Provides theoretical foundation for GUARDIAN's use of POSS

e
POSS: Membership in co-NP (Proposition)

Claim: Deciding if a status set SS is Pareto-optimal feasible is in co-NP.
Proof Intuition (5 Steps):
O Feasibility Check: Verify SS satisfies all 8 conditions of Definition (feasible status set) —
this is polynomial time
@ Complementary Problem: “Is SS NOT Pareto-optimal?” is in NP because:

e We can guess a witness status set SS’ that dominates SS
o Verify SS’ is feasible (polynomial time)
o Verify SS’ dominates SS on objective functions (polynomial time)

© Verification: Given witness SS’, check Vf € OF : f(SS’) > f(SS) and
af : £(SS') > £(SS)
@ Polynomial Verification: All checks are polynomial in problem size

© Conclusion: Since complement is in NP, original problem is in co-NP

POSS: co-NP-Hardness (Theorem) — Part 1

Claim: Deciding if a status set is Pareto-optimal feasible is co-NP-hard.
Proof Strategy: Reduction from 3-Colorability (known NP-complete)
Step 1: Problem Setup

e Given graph G = (V,E)

@ Question: Can G be 3-colored? (adjacent vertices different colors)
Step 2: Reduction Construction

@ Actions: For each vertex v € V:

e coloring,(v, c1), coloring,(v, c;), coloring (v, c3) — color assignments
o dummycoloring,(v, c1) — dummy action
o vertex,(v) — vertex activation

@ Objective function: (SS) = |{Do coloring,(v,c) € SS}|

10/39

e
POSS: co-NP-Hardness (Theorem) — Part 2

Step 3: Integrity Constraints (encode graph structure)

e < coloring(X, C1) A dummycoloring(Y, (2)
(Can't have both real and dummy coloring)

o «+ edge(X, Y) A coloring(X, C) A coloring(Y, C)
(Adjacent vertices can't share colors — encodes edge constraints)
@ « coloring(X, c1) A coloring(X, c2) (each vertex gets one color)
Step 4: Key Equivalence
G is 3-colorable < 35S’ with f(SS’) = |V| < empty SS is NOT Pareto-optimal

Step 5: Conclusion
Since 3-colorability is NP-complete, determining if SS is Pareto-optimal is co-NP-hard.

11/39

POSS: Corollary — co-NP-Completeness

Corollary: Under fixed program, constraints, and polynomial objectives, POSS membership is
co-NP-complete.

Proof:

@ Upper bound: Proposition 1 shows membership in co-NP
@ Lower bound: Theorem 1 shows co-NP-hardness
© Therefore: co-NP-complete

Practical Implication:

@ Unless P = NP, no polynomial algorithm exists
e Motivates approximate/heuristic algorithms

@ Our algorithms exploit problem structure for practical efficiency

12/39

S keS|
POSS: Closure Complexity

Proposition: Under fixed program and constraints, Closure runs in polynomial time.
Proof Sketch:

Q Initialization: O(]A|) where A is action set
@ Main loop iterations:

o Each iteration adds at least one status atom
e Maximum status atoms: O(]A|)
o Therefore: O(|A]) iterations

© Per-iteration cost:

o Rule application: O(|P]) for fixed program P
o Conflict checking: O(|DC]) for fixed denials

@ Total: O(|A| - (|P]|+ |DC|)) = polynomial

13/39

e
POSS Algorithms: POSS-WAM (Weakly Anti-Monotonic)

Key ldea: Traverse lattice of status sets bottom-up (BFS)
Why this works for anti-monotonic functions:
o If S5 C 5SSy, then f(S551) > £(SS2) (anti-monotonic)
@ Smaller status sets have higher (better) objective values
@ So start from smallest (LSS) and expand only if needed

Algorithm Flow:
@ Compute LSS = minimal status set satisfying rules
@ |If LSS feasible and Pareto-optimal, return it
© Otherwise, expand by adding one status atom at a time
@ At each level, check for feasible Pareto-optimal sets
© First feasible set found is Pareto-optimal (due to anti-monotonicity)

Efficiency: Avoids enumerating all 214! possible status sets

e
POSS Algorithms: POSS-SAM (Strongly Anti-Monotonic)

Key Difference from POSS-WAM:
@ Strongly anti-monotonic: only Do atoms affect objective value
e {a|Doa € S51} C {a|Doa € SS5,} = £(551) > £(5S2)
Algorithm Optimization:
© Separate status atoms into:

e SA-Do = {Doa} atoms
e SA-FPO = {Fa,Pa,Oa} atoms

@ Initialize with all FPO combinations: {LSS U X|X C SA-FPO}
© Expand by adding only Do atoms (not all status atoms)

@ This reduces search space significantly

Intuition: Since only Do atoms affect objectives, we can freely add FPO atoms without
changing Pareto-optimality comparisons.

15/39

S keS|
DEWS: No-Fly Zone Feature Computation

Data Source: godrone.nl (Dutch no-fly zone database)

Distance Computation: Haversine formula for GPS coordinates

d = 2r - arcsin (\/Sin2 <A2¢> 4 cos(¢1) cos(o) sin? (A2/\>>

where r = Earth’s radius, ¢ = latitude, A = longitude

Six NFZ Features Extracted:
© enter noflyzone: Binary flag (1 if trajectory entered any NFZ)
@ perc_noflyzone: Percentage of waypoints inside NFZ
© nf_d min: Minimum distance to nearest NFZ boundary
Q nf_d max: Maximum distance to nearest NFZ boundary
© nf_d_mean: Mean distance to nearest NFZ
@ nf_d_std: Standard deviation of NFZ distances

Surprising Finding: NFZ features less important than expected; asset values dominate.

DEWS: Late Fusion Formula

where:
e M;(t) = probability prediction from classifier i that trajectory t is threatening
@ w; = weight assigned to classifier /
o Y11 w; = 1 (weights normalized)
Weight Optimization:
@ Grid search over weight combinations
@ Objective: maximize overall Fl-score on validation set
@ Final weights emphasize classifiers with complementary errors

Why Late Fusion Works:
@ Ensemble reduces variance and improves robustness
o Consistently outperforms all 11 individual classifiers

17/39

S keS|
DEWS: Runtime Analysis

Two-Phase Runtime:
@ Feature Extraction: Slight increase with observation window

e More waypoints = more computation
o Still sub-second for all windows

@ Prediction (Late Fusion): Constant regardless of trajectory length
o Fixed number of features (110)

e Same 11 classifiers regardless of input size
Why 3 seconds total runtime is acceptable:
o DEWS is early warning, not real-time interception
@ +7% F1 improvement over best single classifier

@ Enables proactive defense planning

18/39

DEWS: Why F1 Drops at Intermediate Windows

Finding 2: Increasing observation window does NOT always improve performance

Observed Pattern:
@ 5s: Recall = 0.789, Precision = 0.934
@ 30-60s: Slight decline in both metrics

@ 180s+: Performance improves again
@ Peak at 360s (6 min)

Explanation: Trajectory Heterogeneity

@ At bs: Only fast-moving, clearly threatening trajectories captured — high precision
o At 30-60s: Mix of:

o Fully-observed short trajectories (complete information)
o Partially-observed long trajectories (incomplete information)
e This heterogeneity creates classification noise

o At 180s+: Most trajectories fully characterized — cleaner signal

Dataset Statistics: Avg. trajectory duration 265-298 seconds

19/39

S keS|
STATE: Why CLIP Encoder?

Answer: CLIP provides powerful visual feature extraction

Ablation Study Results:

Configuration ‘ MDE (Threat) MDE (Safe)
Full STATE (CLIP) 1.27 1.62
STATE w/o CLIP (histogram) 13.34 19.94
STATE w/o F (no geography) 8.64 6.25

Key Insight: Histogram encoding is WORSE than no geography!
Why CLIP works for our task:
@ O-channel tensor F (satellite, street map, NFZ, population, assets) is complex
@ CLIP’s pre-training on diverse image-text pairs — robust features
@ Simple encoders cannot capture high-level spatial correlations
o CLIP generalizes to “atypical” visual inputs like our geographic features

S keS|
STATE: Loss Components and Weights

Combined Generator Loss:
Le=A-Lyv+AT-LT

Component Roles:

@ Ly (Trajectory Validity Loss):
o Feedback from discriminator MY
o Ensures generated trajectories look realistic
e “Can this fool the discriminator?”

@ L7 (Threat Alignment Loss):
o Feedback from pre-trained classifier M T
o Ensures trajectories match target threat class
o "Does this look threatening/safe as intended?”

Weight Rationale (\y = 0.6, A7 = 0.4):
@ Ay > A7: Prioritize realism (unrealistic trajectories useless)
@ Too high A7r: Generator places disproportionate waypoints in NFZ
@ Balance determined empirically

S keS|
STATE: Why Keep M Static?

Design Choice: M is pre-trained and fixed, NOT adversarial

Evidence from Adversarial Training Analysis:

Beginning of Training: End of Training;:
o Uses threat label 8 effectively @ MYV can no longer separate threat classes
@ Clear separation in embedding space o Prioritizes features for real/fake distinction

.. . @ Threat semantics lost
Critical Insight:

“MV' prioritized features that do not depend on threat semantics to distinguish real
from synthetic.”

Solution: Separate threat-aware feedback via static M T
o M7 always knows what “threatening” looks like
@ Decouples realism from threat alignment
@ Both objectives jointly optimized by generator

o badwpSlides
Statistical Methods Used

All Key Results Are Statistically Significant
Method: Mann-Whitney U-test

@ Non-parametric test (no normal distribution assumption)
@ Compares two independent samples

@ Appropriate for our experimental data
Bonferroni Correction:

@ Adjusts for multiple hypothesis testing

@ If testing n hypotheses at significance a:

(6%
Qcorrected = —

@ Prevents false positives from multiple comparisons

S keS|
STATE: Statistical Significance Results

Table Caption: “*** indicates statistical significance (Bonferroni-corrected p-value < 0.001)"

Key Significant Results:

Comparison ‘ Metric Values Significance

STATE vs LSTM | MDE (threat) 1.27 vs 5.25 | p < 0.001***
STATE vs LSTM | MDE (safe) 1.62 vs 3.19 | p < 0.001***
STATE vs VAE MDE (threat) 1.27 vs 9.61 | p < 0.001***
STATE vs all SSIM 0.66 vs >0.85 | p < 0.001***

Quote from Dissertation:
“All hypotheses tested in this chapter report Bonferroni-corrected p-values, obtained
with Mann-Whitney U-test, to adjust for multiple hypothesis testing.”

- GackpSies
GUARDIAN: Mean Q-Values

35
35 100 y"}(\jr
An N
30 :},‘ "
3 T
25 — Compliance 1:1 Complience 1:1 80 — Compliance 1:1
-+ Compliance 2:1 Compliance 2:1 Compliance 2:1
-~ Compliance 3:1 Compliance 3:1 Compliance 3:1
20 Compliance 12| Compliance 1:2 Compliance 1:2
E ~%- Compliance 1:3 E Compliance 1:3 | g Compliance 1:3
] — No compliance 1:1] No compliance 1:1 E] No compliance 1:1
15 w12 No compliance 2:1 No compliance 2:1 No compliance 2:1
== No compliance 3:1 No compliance 3:1 0 No compliance 3:1
0 No compliance 1:2 { No compliarice 1:2 No compliance 1:2
v i No compliance 1:3 | No compliance 1:3 No compliance 13 |
Y :
5
0
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 0
Episode Episode Episode

Figure: 64x64 grid: 16, 32, 64 BLUE drones.

- GackpSies
GUARDIAN: Mean Q-Value Compliance Cost

16 BLUE 32 BLUE 64 BLUE
B:R | 64x64 128x128 | 64x64 128x128 | 64x64 128x128

Mean Q-Values (higher = better)

1:1 1.428 0.651 0.934 1.639 1.104 2.354
2:1 1.838 0.975 1.296 1.474 1.211 2.720
3:1 1.869 1.458 1.574 1.483 1.137 2.279
1:2 1.338 1.592 1.324 2.335 1.879 3.402
1:3 1.530 1.364 1.574 1.965 2.894 3.179

Table: Compliance cost ratio for mean Q-values: > 1 means compliance increases learned value
estimates.

Key Findings:
@ Compliance usually increases mean Q-values, with gains up to ~3.4x in the best settings.
@ Only 3 of 30 configurations show CCq < 1 (slightly lower Q-values under norms).
@ Largest boosts occur for B:R = 1:2 or 1:3 with more BLUE drones and larger grids,
suggesting norms help focus value learning in harder scenarios.

GUARDIAN: Action Entropy

2.75 —
22 2.50 30 T
204~ w7 — Compliance 1:1 225 — Compliance 1:1 —— Compliance 1:1
+wesr Compliance 2:1 wwwst Compliance 2:1 25 +weer: Compliance 2:1
R ———————
~=- Compliance 3:1 - S Compliance 3:1 === Compliance 3:1 3|
18 Compliance 1:2 200 Compliance 1:2 Compliance 1:2
2 Compliance 1:3 3 --- Compliance 1:3 E} Compliance 1:3
= — No compliance 1:1 £175 — No compliance 1:1 s20 — No compliance 1:1
16 “++ No compliance 2:1 «++ No compliance 2:1 «+++ No compliance 2:1
=== No compliance 3:1 === No compliance 3:1 === No compliance 3:1
150
e No compliance 1:2 No compliance 1:2 15 No compliance 1:2
-~ No compliance 1:3 No compliance 1:3 B -~~~ No compliance 1:3
124
1.0
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Episode Episode Episode

Figure: 64x64 grid: 16, 32, 64 BLUE drones.

NS
GUARDIAN: Action Entropy Compliance Cost

16 BLUE 32 BLUE 64 BLUE
B:R | 64x64 128x128 | 64x64 128x128 | 64x64 128x128

Action Entropy (lower = better)

1:1 0.698 0.748 0.607 0.629 0.457 0.501
2:1 0.694 0.759 0.596 0.619 0.460 0.494
3:1 0.683 0.748 0.567 0.623 0.459 0.500
1:2 0.640 0.634 0.467 0.502 0.362 0.381
1:3 0.557 0.571 0.402 0.462 0.292 0.327

Table: Compliance cost ratio for action entropy: < 1 means compliance reduces entropy (more decisive
policies).
Key Findings:
@ All configurations have CCy < 1: norms consistently lower action entropy (policies less
random / more focused).
@ Strongest reductions (down to ~0.29-0.33) occur for B:R = 1:3 with many BLUE drones,
indicating sharper decisions when defenders are outnumbered.

o badwpSlides
GUARDIAN: Norm Combinations

‘Agoregated Reward by Norm Count Aggregated Reward by Norm Count ‘Agaregated Reward by Norm Count

nnnnnnnnnnnnnnnnnnnnn

(a) 64x64 grid, 16v16 drones (b) 64x64 grid, 32v32 drones (c) 64x64 grid, 64v64 drones

Figure: Test rewards across norm combinations in symmetric (1:1) competitive scenarios. Lines
represent mean performance with standard deviation bands.

Limitations: Dataset and Generalizability

DEWS & STATE Limitations:
@ Single-city dataset (The Hague)
@ 349 trajectories over 8 months
o May not generalize to:
o War zones (Ukraine)
o Different urban layouts
o Different drone types

Mitigating Factors:

e Key predictor (asset values) doesn't depend on drone

@ Tested with three distributions (LTP, MTP, HTP)

@ STATE designed to generalize to unseen regions

@ Expert evaluation validates generalization
GUARDIAN Limitations:

e 2D grid (no altitude)

@ RED as non-learning baseline

30/39

Limitations: Incrementally Adding New Norms

Question: Can new norms be added without retraining?
Current Answer: No — retraining is required
Why Retraining is Necessary:

@ CAS computation happens at each timestep

@ Norms affect action masking during training

© New norms change feasible action space

@ Policy must relearn optimal behavior in new space

Future Work:
@ Transfer learning for norm updates
@ Modular policy architectures

@ Incremental norm incorporation

31/39

Limitations: Training Parameters

Question: Why 5,000 episodes? Why these parameters?
5,000 Episodes Justification:
@ Standard RL practice for multi-agent environments
@ Observed convergence in learning curves (typically by episode ~4,000)

@ Computational constraint: 630 hours with DRs vs 80 hours without

Other Fixed Parameters:

Parameter | Value | Rationale

Grid sizes 64x64, 128x128 | Standard benchmarks

Battery 100 units Reasonable operational constraint
View range 5 cells Balance realism/tractability

Fire range 1 cell Close-range engagement
Communication | 80% success Models realistic unreliability

32/39

S keS|
Q&A: Why Not Use Speed in Trajectory Definition?

Question: Your trajectory definition has no speed. Isn't that a limitation?

Answer:
e Acknowledged limitation (mentioned in dissertation)
@ Current definition:

7 = {w; = (latj,long;, hj)|j = 1,..., M;}

@ Why acceptable for our work:
o DEWS extracts speed as derived features from timestamps
e STATE focuses on spatial patterns, not temporal dynamics
o Altitude variations captured in h;

o Future work:
o Extend to include timestamps: (lat;, long;, hj, t;)
o Model velocity and acceleration patterns
e Enable temporal trajectory generation

33/39

S keS|
Q&A: Why Disjoint Train/Test Regions?

Question: “A disjoint from C" — what does this mean?

Context: STATE training vs. testing regions
Answer:
@ Training regions A and testing regions C are disjoint

@ No overlap between where we train and where we test
o This is critical for validating generalization

Why this matters:

e If ANC # (): Model might memorize specific regions

@ Disjoint regions ensure model learns general patterns

o Validates STATE's use case: generating for unmonitored areas
From dissertation:

“This mirrors our use case for STATE: synthesizing plausible drone trajectories for
regions where no flight data is available.”

34/39

o badwpSlides
Q&A: Dual-Use Concerns

Question: Could STATE be misused to plan attacks?

Answer:

e Acknowledged concern (mentioned in dissertation limitations)
o Mitigating factors:
o STATE designed for defense testing, not attack planning
o Requires asset value annotations (controlled by authorities)
o Generating trajectories # operational capability
e Similar dual-use exists in all security research
@ Responsible disclosure:
e Developed with Dutch Police input
o They understand and accept the research
o Benefits to defense outweigh risks
o Privacy protections:
o Features can exclude identifying information
o Compatible with privacy-preserving approaches

35/39

S keS|
Q&A: Why Binary Threat Classification?

Question: Why only safe vs. threatening? What about medium threats?

Answer:

o DEWS handles multiple levels:
o LTP: Low-threat prediction (score < 4)
e MTP: Medium-threat prediction (score € [4,8))
e HTP: High-threat prediction (score > 8)

o STATE uses binary for simplicity:
e Proof of concept for conditioned generation
e Binary distinction is most operationally relevant
e Multi-class generation is straightforward extension

o Operational reality:
o Security responses are often binary (intervene or not)
e Medium threats can be handled by adjusting threshold
o DEWS provides continuous threat scores for nuance

36/39

S keS|
Q&A: Why Not Reward Shaping?

Question: Why use hard constraint enforcement instead of reward shaping for compliance?

Answer:
@ Reward shaping: Violations incur penalties but remain possible

o Agent may learn to “accept” penalty for high-reward violations
e No formal guarantee of compliance
e Sensitive to penalty magnitude tuning

e Hard constraints (our approach):

o Infeasible FSSs never explored during training or execution
e Formal guarantee: all policies are compliant by construction
o Reduces search space (can improve learning)

Our experiments show: Hard constraints can actually improve performance at scale.

37/39

- GackpSies
Q&A: Why RL Instead of Pareto Optimization?

Question: POSS uses Pareto optimization. Why doesn't GUARDIAN?

Pareto Optimization (POSS): RL (GUARDIAN):
@ Static: One decision point @ Sequential: Many decisions
@ Objectives fixed a priori @ Learn from outcomes
@ No feedback from environment e Environment feedback (rewards)
@ Optimal for this moment e Optimal over trajectory
Use case: Single resource allocation Use case: Multi-step game

Key: Defense is inherently sequential. Today's action affects tomorrow’s state. RL captures
this; static Pareto doesn't.

38/39

- GackpSies
Q&A: What GUARDIAN Keeps from POSS

GUARDIAN uses POSS for constraint enforcement, not optimization.

Component From POSS? | Purpose in GUARDIAN
Deontic operators (P, O, F, Do) v Specify legal constraints
Status set definition v Structure for action bundles
Feasibility conditions v Check legal compliance
Closurealgorithm v Compute minimal legal set
FSS enumeration v Find all legal options
Multi-objective functions X Replaced by RL reward
Pareto dominance check X Replaced by Q-learning

Summary: POSS provides the “constraint engine”; RL provides the “policy engine.”

39/39

	Introduction
	DEWS: Drone Early Warning System
	STATE: Safe and Threatening Adversarial Trajectory Engine
	GUARDIAN: Governance-Unified Aerial Reinforcement-Defense
	Conclusion
	Appendix
	Backup Slides

