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Introduction

The Emerging Drone Threat

Drone proliferation creates security challenges

Terror groups actively use drones (ISIS, Hezbollah,
PKK)

State-sponsored warfare (Ukraine, India-Pakistan
2025)

Critical infrastructure attacks (Saudi oil refineries,
2019)

Urban environments face complex airspaces

Legitimate vs. malicious drone flights

Real-time threat assessment required

Legal and ethical constraints on responses

Notable Incidents

• Gatwick Airport (2018):
1,000+ flights canceled

• Saudi Aramco Attack (2019):
$2B damage to oil facilities

• Jammu Air Force (2021):
First drone attack on Indian military

• Ukraine Conflict (2022-ongoing):
Thousands of drone strikes on cities

• India-Pakistan (2025):
Drone warfare escalation
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Introduction

Central Research Question

Overarching Challenge

How can autonomous systems defend regions from drone attacks while maintaining legal and
ethical compliance?

Four Core Research Problems:

1 Early Threat Detection: Distinguish threats from benign flights within seconds

2 Data Scarcity: Generate realistic threat trajectories when real data is scarce

3 Legal Reasoning: Make decisions that satisfy all applicable legal/ethical constraints

4 Adaptive Defense: Learn effective strategies while maintaining strict compliance

This dissertation makes significant progress towards each of these four problems.
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Introduction

Problem 1: Early Threat Prediction (DEWS)

Drone Threat Prediction Problem (DTPP)

Given the first j seconds of a live trajectory and drone metadata, classify whether the flight
will become threatening.

Motivation:

Security officials need actionable intelligence in 30 seconds

Limited observation data for decision-making

Must balance false positives (disrupting legitimate flights) vs. false negatives (missing
threats)

Our Solution: DEWS—Drone Early Warning System

First system for early drone threat prediction from partial trajectories

Achieves F1 > 0.80 within 30 seconds of observation

Validated on real data from The Hague with Dutch police
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Introduction

Problem 2: Threat-Conditioned Trajectory Generation (STATE)

Data Scarcity Problem

Real threat trajectory data is scarce. How can we generate realistic synthetic data for training
and testing defense systems?

Motivation:

Few real-world threat trajectories exist

Privacy and security constraints limit data sharing

Need diverse scenarios across different geographic regions

Our Solution: STATE—Safe and Threatening Adversarial Trajectory Engine

cGAN-based architecture for threat-conditioned trajectory synthesis

Generates realistic trajectories over unseen regions

35.8% improvement in F1-score vs. baselines (expert validated)
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Introduction

Problem 3 & 4: Compliant Defense (GUARDIAN)

The Compliance Gap

Standard RL maximizes reward without considering legal norms. How can defenders act
legally while learning to be effective?

Motivation:

Must reason about complex deontic rules (obligations, permissions, prohibitions)

Need to ensure all actions are compliant before execution

Learn effective policies within the compliant action space

Our Solution: GUARDIAN—Governance-Unified Aerial Reinforcement-Defense

Uses deontic logic to specify drone warfare legal/ethical constraints

Leverages feasible status set computation algorithms from prior work

Integrates FSS-based action masking with multi-agent RL

Counterintuitive finding: Compliance can improve defensive performance
Responsible Defense from Multi-Drone Attacks 9/48



DEWS: Drone Early Warning System
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DEWS: Drone Early Warning System

DEWS: Problem Formulation

Drone Threat Prediction Problem (DTPP)

Given the first j seconds of a live trajectory τ and drone metadata, classify whether the flight
will become threatening.

Formal Definition:

Trajectory: τd = ((ℓd1 , t1), . . . , (ℓ
d
n , tn))

Temporal restriction: tr(τd , j)

Threat score: y(τd) ∈ [1, 10]

Learn: flev : (d , tr(τd , j))→ {0, 1}, where
f (d , tr(τd , j)) = 1 if threat ≥ lev

Observation Windows:
j ∈ {1, 5, 10, 20, 30, 60, 180, 360} seconds

Threat Thresholds:

Low: score < 4 (61% of data)

Medium: score ∈ [4, 8) (27%)

High: score ≥ 8 (12%)

Key Research Focus:
Analyze earliness vs. accuracy tradeoff
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DEWS: Drone Early Warning System

DEWS: Real-World Dataset (The Hague)

Dataset (provided by Dutch Police):

8 months: Dec 2020 – Jul 2021

349 trajectories from The Hague

Senhive RF sensors (25 km radius)

18 distinct drones observed

Avg. flight: 5 min / 750 m traveled

Expert Annotation:

Dutch police & municipality experts

Inter-annotator agreement: κ = 0.772
(substantial)

Anonymized for public release

Dataset Statistics by Threat Level

Metric Low Med High

Trajectories 213 94 42
Duration (s) 265 298 286
Distance (m) 435 988 752
Altitude (m) 63 116 101
Speed (km/h) 7.1 14.6 10.4

First real-world drone threat dataset
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DEWS: Drone Early Warning System

DEWS: System Overview
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Figure: DEWS Architecture. Data set preparation involves annotating asset values and drone trajectories by police.
Subsequently, DEWS extracts features and trains 11 classifiers M1, · · · ,M11 to yield 11 predictions which are integrated
using late fusion to predict the final threat level. During operational use (after training), an initial part of a live trajectory
is processed to extract features, and the combination of single predictors and late fusion produces the final threat score.
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DEWS: Drone Early Warning System

DEWS: Feature Engineering

Six Feature Categories (Total: 110 features)

1 Basic Flight Parameters
Waypoint counts, duration
Spatial spread, bounding box

2 Drone Capabilities
Max payload, battery capacity
Top speed, range

3 Altitude & Speed Metrics
Min/mean/max/percentiles
Ground speed profiles

4 No-Fly Zone (NFZ) Compliance
Intrusion flags
Min distance to restricted areas
% time in NFZ

5 Asset-Value Features
Max/mean/cumulative values
Ground asset importance

6 Historical Similarity
self and cross-similarity with past
trajectories
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DEWS: Drone Early Warning System

DEWS: Performance Results

Key Findings
1 Rapid Early Warning

F1 > 0.80 after 30 seconds
Precision > 90%, Recall ∼ 75%
Peaks at F1 = 0.96 (6-min prefix)

2 Late Fusion Superiority
Consistently beats all 11 base models
Robust across observation windows

3 Key Feature Insight
Asset-value features are #1 predictor
Where a drone flies matters

4 Operational Efficiency
3-second end-to-end latency
Actionable time buffer for response
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DEWS: Drone Early Warning System

DEWS: Summary

Contributions:

First system for early drone threat prediction from partial trajectories

Novel integration of geospatial asset values into threat assessment

Ensemble approach achieving 0.80+ F1 within 30 seconds

Practical Impact:

Enables proactive defense planning

Reduces operator cognitive load

Provides actionable time buffer for counter-measures

Limitation: Single-city dataset (The Hague) → Motivates STATE
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STATE: Safe and Threatening Adversarial Trajectory Engine
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Problem Formulation

Trajectory Representation:

τ = {wj = (latj , longj , hj) | j = 1, . . . ,Mτ}

Threat-Conditioned Trajectory Generation

Learn a generative model G such that:

G : (A, θ̂, z)→ τ

where A is any geographical region, θ̂ ∈ {0, 1} is the target threat class, and z is a latent
noise vector.

Key Objective: Generate trajectories over unseen regions while preserving threat-specific
behavioral patterns learned from available data.
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Data Representation Module

OpenStreetMapSecurity ExpertOfficial Web Sources

Figure: The target geographical region A is represented with a multi-channel feature tensor, including
the No-Fly Zone Map FNFZ

A , the Population Density Map FPD
A , the Satellite Imagery F SI

A , the Street
Map F ST

A , and the Asset Value Map FAV
A .
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Waypoint Generator

Waypoint Generator G:
G : (F , θ̂, z)→ τ̂ ∈ {0, 1}H×W

Architecture:

CLIP-based encoder: F ∈ RH×W×9 → XF ∈ RDh

Threat encoder: θ̂ → Xθ̂ ∈ RDh

Latent noise: z ∼ N (0, Id)→ Xz ∈ RDh

Concatenation: X ′ =
[
XF ⊕ Xθ̂ ⊕ Xz

]
∈ R3·Dh

Decoder: Transposed conv layers → τ̂ ∈ {0, 1}128×128

Trajectory Validity DiscriminatorMV : (τ̂ ,F , θ)→ pVτ̂ ∈ [0, 1]

Distinguishes real from synthetic trajectories

Ensures generated trajectories match real data distribution
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Threat Alignment Network and Training

Pre-trained classifierMT ensures threat consistency (based on DEWS)

MT : (τ̂ ,F )→ pTτ̂ = P(θ̂|τ̂ ,F ) ∈ [0, 1]

Pre-trained threat classifier

Ensures generated trajectories match target threat label

Fixed during generator training

Training Strategy:

MV is trained adversarially with G
MT fixed during GAN training (not adversarial)

Provides auxiliary loss: LG = λVLMV + λTLMT
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Adversarial Training Dynamics

Waypoint
Generator 

Trajectory
Validity

Discriminator

Threat
Alignment 
Network 
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Trajectory Reconstruction Module

Challenge: Convert unordered planar projection τ̂ to temporal trajectory τ

Temporal Sequencing Process:

1 Identify contour Ω of largest connected component in τ̂

Ω = {w1,w2, . . . ,wl}

2 For all waypoint pairs (ws ,we) ∈ Ω with d(ws ,we) < ξ:

Generate candidate trajectory π via stochastic random walk
Creates set Π = {π1, π2, . . . , πL} where L =

(
l
2

)
3 Select best trajectory usingMT :

τ∗ = argmax
π∈Π
MT (π,F )

Altitude Assignment: Conditional on threat class θ̂ (drawn from the learned distribution)
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Trajectory Reconstruction Visualization

Contour Detection Random Walk
Generator
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Comparison with Baselines

Evaluation Metrics (lower is better):

MDE (Mean Distance Error): spatial accuracy
SSIM (Structural Similarity): trajectory diversity
JSD-AV: asset value distribution similarity
JSD-TL: trajectory length distribution similarity

MDE ↓ SSIM ↓ JSD-AV ↓ JSD-TL ↓
Method Threat Safe Threat Safe Threat Safe Threat Safe

Random Walk 17.38 15.04 0.928 0.953 0.0065 0.0042 0.054 0.025
Monte Carlo 15.40 14.42 0.944 0.960 0.0051 0.0061 0.050 0.023
LSTM 5.25 3.19 0.882 0.907 0.0045 0.0052 0.027 0.017
VAE 9.61 10.71 0.978 0.940 0.0025 0.0038 0.043 0.019
Traj-GAN 8.29 6.52 0.856 0.826 0.0040 0.0043 0.028 0.017

STATE 1.27 1.62 0.661 0.664 0.0010 0.0020 0.015 0.005

Table: Lower is better. STATE achieves 75.8% improvement over LSTM on threatening trajectories.
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Expert Evaluation on Unseen Regions

Setup:

Generated 200 trajectories over unseen regions

100 per model (STATE, VAE), 50 safe + 50
threatening

Two Dutch police officers independently annotated

F1-Score
Method θ = 0 θ = 1 Acc.

VAE 0.857 0.522 0.780
STATE 0.888 0.709 0.839

∆ +3.6% +35.8% +7.6%
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t-SNE of STATE embeddings. Filled =

model-expert agreement; Hollow =

disagreement.

Key Result: STATE generalizes to unseen regions with 35.8% F1 improvement on
threatening trajectories vs. VAE
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STATE: Safe and Threatening Adversarial Trajectory Engine

STATE: Contributions and Limitations

Contributions:

Novel cGAN architecture for
threat-conditioned trajectory synthesis

Dual feedback: realism + threat alignment

Outperforms 5 baseline methods

Addresses data scarcity for rare threats

Enables testing in unmonitored areas

Limitations:

Single-city evaluation (The Hague)

Binary threat classification

Relies on pre-trained threat classifier

Dual-use considerations

Next Challenge: Given threat detection, how should defenders respond? → GUARDIAN
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: The Core Challenge

The Compliance Gap in RL:

Standard RL: π∗ = argmaxπ E[reward]
Legal/ethical norms N are external

High-reward actions may violate laws

Real-World Challenge:

BLUE team (defenders) must comply with
norms

RED team (attackers) ignores norms

Question: Does compliance disadvantage
BLUE?

BLUE vs. RED scenario over Paris
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Motivating Example

10040 90

70

20

90 50 30 50 40

50 60 60 50

60 60

50 60 60 50

40 50 70 50 40

B1

B2

R1 R2

C Legend:

Blue drone

Red drone

CCTV

Civilian area

Cell values:
infrastructure
importance

Scenario

5×5 urban grid

Green cells: civilian areas

Values: infrastructure importance

R1: Red drone in high-value cell

B1, B2: Blue defenders

Ethical Constraints

Norm 1: No firing in civilian areas unless
immediate threat

Norm 2: Obligatory to fire when
high-value neighbors at risk

⇒ Multiple feasible actions

HQ suggests coordinated response
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN Foundation: Deontic Logic Framework

Deontic Operators specify normative status of actions:

Pα Action α is permitted
Oα Action α is obligatory (must do)
Fα Action α is forbidden
Doα Action α will be executed

Deontic Rules encode legal/ethical constraints:

SA← χ & SA1 & . . . & SAn

where χ is a conjunction of state atoms

We’ll see concrete examples on the next slide.
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Deontic Rules

Example Rules for BLUE Drones:

1 Never fire at cells:
F FireAtCelld(i , j)← Blue(d)

2 Prohibit friendly fire:
F FireAtDroned(d

′)← Blue(d) ∧ Blue(d ′) ∧ SameTeam(d , d ′)

3 Prohibit firing in civilian areas (unless immediate threat):
F FireAtDroned(d

′)← Blue(d) ∧ Red(d ′) ∧ CivilianArea(i , j) ∧ ¬ImmediateThreat(d ′)

4 Obligate engagement when neighbors are high-value:
O FireAtDroned(d

′)←
Blue(d) ∧ Red(d ′) ∧ ImmediateThreat(d ′) ∧ AllNeighborsAbove(i , j , t, λ)

8 total rules developed based on suggestions from security experts.
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

Status Sets

Status Set (SS): A set of ground status atoms specifying the deontic status of each action.

Example Status Set for drone d :

SSd =

{
P MoveTod(3, 4), Do MoveTod(3, 4),
P FireAtDroned(d

′), F FireAtCelld(3, 4)

}

Key Question: Is a status set feasible? That is, does it satisfy all deontic rules, constraints,
and logical consistency requirements?
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

Feasible Status Set (FSS): Definition

Feasible Status Set

A status set SSd is feasible if it satisfies all 8 conditions:

1 Oα ∈ SSd ⇒ Pα ∈ SSd (obligations imply permission)

2 Oα ∈ SSd ⇒ Doα ∈ SSd (obligations must be done)

3 Doα ∈ SSd ⇒ Pα ∈ SSd (done actions must be permitted)

4 Pα ∈ SSd ⇒ Fα /∈ SSd (no permission-prohibition conflict)

5 Pα ∈ SSd ⇒ preconditions of α satisfied (physical feasibility)

6 SSd is closed under operating rules Nd (rule closure)

7 {α | Doα ∈ SSd} satisfies action constraints AC (action consistency)

8 Resulting state satisfies integrity constraints IC (state consistency)

Key Output: The Concurrent Action Set (CAS):

XSSd = {α | Doα ∈ SSd}

This is the set of actions drone d will actually execute.
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

From FSS to Dynamically Masked Action Space

Current State
Sd(t)

Deontic Norms
Nd

Integrity
Constraints

Action
Constraints

FSS
Computation

Set of CASs
{X1,X2, . . .}

Result: Each CAS is a legally compliant combination of actions.

Dynamically Masked Action Space:

Âd(s) = {XSS | SS ∈ Fd(s)}

The drone can only select from these compliant action sets.
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Integrating FSS with Reinforcement Learning

Use FSS computation to dynamically mask the RL action space.

RL with Dynamically Masked Actions

At each state s, the drone optimizes:

π∗d = argmax
πd

E

[ ∞∑
t=0

γtRd(s(t),X (t))

]

Subject to: X (t) ∈ Âd(s(t)) at every step.

Result:

Infeasible FSSs are never explored during training

Infeasible FSSs are never executed during deployment

Learned policies are compliant by construction
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Learning Architecture

Two-Level Hierarchy:

Drone Level: Independent Q-Learning with action masking

Qd(sd ,X ) = E

[
Rd + γ max

X ′∈Âd (s
′
d )
Qd(s

′
d ,X

′)

]

HQ Level: QMIX for centralized training, decentralized execution

Qtot(s
HQ , a) = f (Qd1 , . . . ,Qdm ; s

HQ)

Key Property: Even HQ cannot override drone compliance.

HQ suggests actions; drones verify feasibility via FSS

If HQ suggestion violates norms, drone substitutes feasible alternative
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Experimental Setup

Grid Configuration

Grid sizes: 64×64, 128×128

Cell values: vi ,j(0) ∈ [0, 100]

3 CCTV cameras (view range 10)

Drone Parameters

Blue drones: 16, 32, 64

Battery capacity: 100 units

Payload: 3 units

View range: 5, Fire range: 1

Blue:Red Ratios

1:1 (symmetric)

2:1, 3:1 (defender advantage)

1:2, 1:3 (attacker advantage)

Training

Deep Independent Q-Learning

QMIX for HQ coordination

5,000 episodes

Stochastic communication (80%
success)

Metrics: Reward, City Protection, Win Rate, Q Values, etc.
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Reward
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Figure: 64×64 grid with 16, 32, and 64 BLUE drones

Three Critical Observations:

(Obs 1) Compliance generally worsens performance (expected)

(Obs 2) On 64×64 grid with 32 and 64 BLUE drones, compliance improves performance when RED drones are majority
(1:2, 1:3 ratios)

(Obs 3) Larger problems ⇒ compliance reward approaches or exceeds non-compliance
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: City Protection
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Figure: 64×64 grid: 16, 32, 64 BLUE drones.

Key Finding: Compliance improves city protection in most cases (up to 31.3% improvement).
Only 4 of 30 configurations show degradation.
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Compliance Cost Analysis

Compliance Cost: CC = Performance with Norms
Performance without Norms

16 BLUE 32 BLUE 64 BLUE
B:R 64×64 128×128 64×64 128×128 64×64 128×128

City Protection (higher = better)

1:1 0.860 1.025 0.967 1.044 1.156 1.165
2:1 0.962 1.012 1.082 1.196 1.209 1.283
3:1 0.980 1.083 1.152 1.214 1.187 1.313
1:2 1.041 1.025 1.076 1.092 1.120 1.106
1:3 1.109 1.009 1.076 1.032 1.076 1.093

Table: Compliance cost ratio: > 1 means compliance improves performance.

Key Findings:

Compliance improves city protection in most cases (up to 20.9% improvement)

Only 4 cases show degradation (up to 14%)

Hence, deontic constraints often help rather than hurt defense
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Computational Efficiency

Per-Step Decision Time (ms)

Drones Comp CAS QMIX
16 Yes 215.6 23.7
16 No 0 15.3
32 Yes 446.8 26.2
32 No 0 23.6
64 Yes 554.9 70.8
64 No 0 41.6

Observations

CAS computation: 2.6× increase (16→64 drones)

QMIX inference: 3× increase

Total: 625.7ms for 64 drones

Real-time capable

Training Time

5,000 episodes, 64×64 grid, 64 drones

With norms: ∼630 hours

Without norms: ∼80 hours

Overhead: 7.9× for training

Acceptable for offline training

Key Takeaway

Training overhead significant

But inference remains real-time

Practical for deployment

Legal compliance worth the cost
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GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

GUARDIAN: Summary of Findings

Counterintuitive Result:
Legal compliance does not necessarily handicap defenders

Key Insights:
1 Reduced Search Space: Constraints focus exploration on viable policies
2 Implicit Curriculum: Deontic rules guide learning for complex problems
3 Asymmetric Advantage: RED faces full complexity; BLUE has structured search
4 Scale-Dependent: Benefits most pronounced at larger problem scales
5 Practical Viability: 625.7ms decision time enables real-time deployment

Broader Implications:

Hard constraints can facilitate learning (not just constrain it)

Formal compliance guarantees achievable without sacrificing effectiveness

Challenges assumption that “tied hands” = tactical disadvantage
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Upcoming Section

1 Introduction

2 DEWS: Drone Early Warning System

3 STATE: Safe and Threatening Adversarial Trajectory Engine

4 GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

5 Conclusion
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Concluding Remarks

Central Message:
Regional airspace can be defended proactively and responsibly through integration of
prediction, legal reasoning, and learning.

Key Takeaway:

Legal compliance is not a handicap

Constraints can facilitate learning at scale

Formal guarantees + effectiveness are achievable

Interdisciplinary approach is essential

Vision:
Autonomous defense systems that are simultaneously effective, compliant, adaptive,
transparent, and subject to meaningful human oversight

This dissertation makes significant progress towards this vision.
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Future: DUCK 3D Simulation Environment Testbed

Figure: Three-screen view: (L) Blue/RHQ commands, (C) Ground-truth Unreal rendering, (R) Sensor overlays + UI.
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DUCK Testbed Architecture
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Integrity Constraints (IC) & Action Constraints (AC)

Integrity constraints ensure system consistency and safety. They must hold in the resulting
state.

IC1: Engagement Within Firing Range

← FireAtDroned(d
′) ∧ ¬InFireRange(d , d ′)

“Cannot fire at a drone that is out of range”
Action constraints define permissible combinations of concurrent actions within a single time
step.

AC1: Single Target Engagement

← FireAtDroned(d1) ∧ FireAtDroned(d2) ∧ d1 ̸= d2

“Cannot engage multiple targets simultaneously”
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Computing Feasible Status Sets: LSS

Least Status Set (LSS) Algorithm: Computes the minimal status set that satisfies all
deontic closure conditions.

Key Steps:
1 Initialize: Start with initial constraints (e.g., HQ orders)
2 Enforce deontic closure:

If Oα ∈ SS : add Pα and Doα
If Doα ∈ SS : add Pα

3 Apply operating rules: For each rule whose body is satisfied, add the head
4 Check for contradictions:

If both Pα and Fα exist: return ⊥
If Pα but precondition false: return ⊥
If denial constraints violated: return ⊥

5 Repeat until fixpoint reached

Output: Minimal baseline status set, or ⊥ if no compliant option exists.
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Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSHQ , State Sd (t), Norms Nd ,

IC, AC, Actions Ad (t), Threshold τ

1. DC ← {denial constraints in AC}
2. LSSd ← LSS(SSHQ ,Sd (t),Nd ,DC)
3. if LSSd = ⊥ then LSSd ← LSS(∅,Sd (t),Nd ,DC)
4. if LSSd = ⊥ then return ⊥
5. Ad ← {αd | Pre(αd ) false OR Fαd ∈ LSSd}
6. SAd ← SA(Ad ) \ (SAd ∪ LSSd )
7. SAd -Do ← {Doαd | Doαd ∈ SAd}
8. SAd -FPO ← SAd \ SAd -Do
9. ToInspect ← {LSSd ∪ X | X ⊆ SAd -FPO}; Result ← ∅

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).

Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still ⊥, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).

Lines 7-8: Key Step: Separate Do atoms from F/P/O atoms.

Line 9: Initialize BFS frontier with all FPO combinations.
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Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while ToInspect ̸= ∅ and |Result| < τ do

11. Candidates ← ToInspect; ToInspect ← ∅
12. if some SS ∈ Candidates are feasible under IC & AC then
13. for each feasible FeasSetd in Candidates do
14. Add FeasSetd to Result
15. if |Result| = τ then return Result
16. else
17. for each Candd in Candidates do
18. for each Doαd ∈ (SAd -Do \ Candd ) do
19. Add (Candd ∪ {Doαd}) to ToInspect
20. end while
21. return Result

Line 10-11: Loop until no candidates OR collected τ feasible sets.

Line 12: Check feasibility against IC and AC.
Lines 13-15: Collect feasible sets into Result.
Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).
Line 19: BFS: one Do atom per expansion step.
Line 21: Return all collected feasible status sets Fd = {SS1,SS2, . . .} — set of feasible status sets.
Each FSS yields a Concurrent Action Set: XSSi = {α | Doα ∈ SSi}
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POSS: Proof Overview

Three Key Complexity Results in POSS Chapter:

1 Proposition (Membership): Deciding if a status set is a Pareto-optimal feasible status
set is in co-NP

2 Theorem (Hardness): Deciding if a status set is a Pareto-optimal feasible status set is
co-NP-hard

3 Proposition (Closure): The Closure algorithm runs in polynomial time

Why these results matter:

Establishes computational complexity bounds for decision problems

Justifies the need for heuristic algorithms in practice

Provides theoretical foundation for GUARDIAN’s use of POSS

Responsible Defense from Multi-Drone Attacks 8/39



Backup Slides

POSS: Membership in co-NP (Proposition)

Claim: Deciding if a status set SS is Pareto-optimal feasible is in co-NP.

Proof Intuition (5 Steps):

1 Feasibility Check: Verify SS satisfies all 8 conditions of Definition (feasible status set) –
this is polynomial time

2 Complementary Problem: “Is SS NOT Pareto-optimal?” is in NP because:

We can guess a witness status set SS ′ that dominates SS
Verify SS ′ is feasible (polynomial time)
Verify SS ′ dominates SS on objective functions (polynomial time)

3 Verification: Given witness SS ′, check ∀f ∈ OF : f (SS ′) ≥ f (SS) and
∃f : f (SS ′) > f (SS)

4 Polynomial Verification: All checks are polynomial in problem size

5 Conclusion: Since complement is in NP, original problem is in co-NP
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POSS: co-NP-Hardness (Theorem) – Part 1

Claim: Deciding if a status set is Pareto-optimal feasible is co-NP-hard.

Proof Strategy: Reduction from 3-Colorability (known NP-complete)

Step 1: Problem Setup

Given graph G = (V ,E )

Question: Can G be 3-colored? (adjacent vertices different colors)

Step 2: Reduction Construction

Actions: For each vertex v ∈ V :

coloringa(v , c1), coloringa(v , c2), coloringa(v , c3) – color assignments
dummycoloringa(v , c1) – dummy action
vertexa(v) – vertex activation

Objective function: f (SS) = |{Do coloringa(v , c) ∈ SS}|
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POSS: co-NP-Hardness (Theorem) – Part 2

Step 3: Integrity Constraints (encode graph structure)

← coloring(X ,C1) ∧ dummycoloring(Y ,C2)
(Can’t have both real and dummy coloring)

← edge(X ,Y ) ∧ coloring(X ,C ) ∧ coloring(Y ,C )
(Adjacent vertices can’t share colors – encodes edge constraints)

← coloring(X , c1) ∧ coloring(X , c2) (each vertex gets one color)

Step 4: Key Equivalence
G is 3-colorable ⇔ ∃SS ′ with f (SS ′) = |V | ⇔ empty SS is NOT Pareto-optimal

Step 5: Conclusion
Since 3-colorability is NP-complete, determining if SS is Pareto-optimal is co-NP-hard.
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POSS: Corollary — co-NP-Completeness

Corollary: Under fixed program, constraints, and polynomial objectives, POSS membership is
co-NP-complete.

Proof:

1 Upper bound: Proposition 1 shows membership in co-NP

2 Lower bound: Theorem 1 shows co-NP-hardness

3 Therefore: co-NP-complete

Practical Implication:

Unless P = NP, no polynomial algorithm exists

Motivates approximate/heuristic algorithms

Our algorithms exploit problem structure for practical efficiency
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POSS: Closure Complexity

Proposition: Under fixed program and constraints, Closure runs in polynomial time.

Proof Sketch:

1 Initialization: O(|A|) where A is action set
2 Main loop iterations:

Each iteration adds at least one status atom
Maximum status atoms: O(|A|)
Therefore: O(|A|) iterations

3 Per-iteration cost:

Rule application: O(|P|) for fixed program P
Conflict checking: O(|DC |) for fixed denials

4 Total: O(|A| · (|P|+ |DC |)) = polynomial
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POSS Algorithms: POSS-WAM (Weakly Anti-Monotonic)

Key Idea: Traverse lattice of status sets bottom-up (BFS)

Why this works for anti-monotonic functions:

If SS1 ⊆ SS2, then f (SS1) ≥ f (SS2) (anti-monotonic)

Smaller status sets have higher (better) objective values

So start from smallest (LSS) and expand only if needed

Algorithm Flow:

1 Compute LSS = minimal status set satisfying rules

2 If LSS feasible and Pareto-optimal, return it

3 Otherwise, expand by adding one status atom at a time

4 At each level, check for feasible Pareto-optimal sets

5 First feasible set found is Pareto-optimal (due to anti-monotonicity)

Efficiency: Avoids enumerating all 2|A| possible status sets
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POSS Algorithms: POSS-SAM (Strongly Anti-Monotonic)

Key Difference from POSS-WAM:

Strongly anti-monotonic: only Do atoms affect objective value

{α|Doα ∈ SS1} ⊆ {α|Doα ∈ SS2} ⇒ f (SS1) ≥ f (SS2)

Algorithm Optimization:
1 Separate status atoms into:

SA-Do = {Doα} atoms
SA-FPO = {Fα,Pα,Oα} atoms

2 Initialize with all FPO combinations: {LSS ∪ X |X ⊆ SA-FPO}
3 Expand by adding only Do atoms (not all status atoms)

4 This reduces search space significantly

Intuition: Since only Do atoms affect objectives, we can freely add FPO atoms without
changing Pareto-optimality comparisons.
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DEWS: No-Fly Zone Feature Computation

Data Source: godrone.nl (Dutch no-fly zone database)

Distance Computation: Haversine formula for GPS coordinates

d = 2r · arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

))
where r = Earth’s radius, ϕ = latitude, λ = longitude

Six NFZ Features Extracted:
1 enter noflyzone: Binary flag (1 if trajectory entered any NFZ)
2 perc noflyzone: Percentage of waypoints inside NFZ
3 nf d min: Minimum distance to nearest NFZ boundary
4 nf d max: Maximum distance to nearest NFZ boundary
5 nf d mean: Mean distance to nearest NFZ
6 nf d std: Standard deviation of NFZ distances

Surprising Finding: NFZ features less important than expected; asset values dominate.
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DEWS: Late Fusion Formula

y(t) =
11∑
i=1

Mi (t) · wi

where:

Mi (t) = probability prediction from classifier i that trajectory t is threatening
wi = weight assigned to classifier i∑11

i=1 wi = 1 (weights normalized)

Weight Optimization:

Grid search over weight combinations
Objective: maximize overall F1-score on validation set
Final weights emphasize classifiers with complementary errors

Why Late Fusion Works:

Ensemble reduces variance and improves robustness
Consistently outperforms all 11 individual classifiers
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DEWS: Runtime Analysis

Two-Phase Runtime:
1 Feature Extraction: Slight increase with observation window

More waypoints = more computation
Still sub-second for all windows

2 Prediction (Late Fusion): Constant regardless of trajectory length

Fixed number of features (110)
Same 11 classifiers regardless of input size

Why 3 seconds total runtime is acceptable:

DEWS is early warning, not real-time interception

+7% F1 improvement over best single classifier

Enables proactive defense planning
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DEWS: Why F1 Drops at Intermediate Windows

Finding 2: Increasing observation window does NOT always improve performance

Observed Pattern:

5s: Recall = 0.789, Precision = 0.934
30-60s: Slight decline in both metrics
180s+: Performance improves again
Peak at 360s (6 min)

Explanation: Trajectory Heterogeneity

At 5s: Only fast-moving, clearly threatening trajectories captured → high precision
At 30-60s: Mix of:

Fully-observed short trajectories (complete information)
Partially-observed long trajectories (incomplete information)
This heterogeneity creates classification noise

At 180s+: Most trajectories fully characterized → cleaner signal

Dataset Statistics: Avg. trajectory duration 265-298 seconds
Responsible Defense from Multi-Drone Attacks 19/39
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STATE: Why CLIP Encoder?

Answer: CLIP provides powerful visual feature extraction

Ablation Study Results:

Configuration MDE (Threat) MDE (Safe)

Full STATE (CLIP) 1.27 1.62
STATE w/o CLIP (histogram) 13.34 19.94
STATE w/o F (no geography) 8.64 6.25

Key Insight: Histogram encoding is WORSE than no geography!

Why CLIP works for our task:

9-channel tensor F (satellite, street map, NFZ, population, assets) is complex
CLIP’s pre-training on diverse image-text pairs → robust features
Simple encoders cannot capture high-level spatial correlations
CLIP generalizes to “atypical” visual inputs like our geographic features
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STATE: Loss Components and Weights

Combined Generator Loss:
LG = λV · LV + λT · LT

Component Roles:
1 LV (Trajectory Validity Loss):

Feedback from discriminatorMV

Ensures generated trajectories look realistic
“Can this fool the discriminator?”

2 LT (Threat Alignment Loss):
Feedback from pre-trained classifierMT

Ensures trajectories match target threat class
“Does this look threatening/safe as intended?”

Weight Rationale (λV = 0.6, λT = 0.4):

λV > λT : Prioritize realism (unrealistic trajectories useless)
Too high λT : Generator places disproportionate waypoints in NFZ
Balance determined empirically
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STATE: Why KeepMT Static?

Design Choice: MT is pre-trained and fixed, NOT adversarial

Evidence from Adversarial Training Analysis:

Beginning of Training:

Uses threat label θ̂ effectively

Clear separation in embedding space

End of Training:

MV can no longer separate threat classes

Prioritizes features for real/fake distinction

Threat semantics lost
Critical Insight:

“MV prioritized features that do not depend on threat semantics to distinguish real
from synthetic.”

Solution: Separate threat-aware feedback via staticMT

MT always knows what “threatening” looks like

Decouples realism from threat alignment

Both objectives jointly optimized by generator
Responsible Defense from Multi-Drone Attacks 22/39
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Statistical Methods Used

All Key Results Are Statistically Significant

Method: Mann-Whitney U-test

Non-parametric test (no normal distribution assumption)

Compares two independent samples

Appropriate for our experimental data

Bonferroni Correction:

Adjusts for multiple hypothesis testing

If testing n hypotheses at significance α:

αcorrected =
α

n

Prevents false positives from multiple comparisons
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STATE: Statistical Significance Results

Table Caption: “*** indicates statistical significance (Bonferroni-corrected p-value < 0.001)”

Key Significant Results:

Comparison Metric Values Significance

STATE vs LSTM MDE (threat) 1.27 vs 5.25 p < 0.001***
STATE vs LSTM MDE (safe) 1.62 vs 3.19 p < 0.001***
STATE vs VAE MDE (threat) 1.27 vs 9.61 p < 0.001***
STATE vs all SSIM 0.66 vs >0.85 p < 0.001***

Quote from Dissertation:
“All hypotheses tested in this chapter report Bonferroni-corrected p-values, obtained
with Mann-Whitney U-test, to adjust for multiple hypothesis testing.”
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GUARDIAN: Mean Q-Values
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Figure: 64×64 grid: 16, 32, 64 BLUE drones.
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GUARDIAN: Mean Q-Value Compliance Cost

16 BLUE 32 BLUE 64 BLUE
B:R 64×64 128×128 64×64 128×128 64×64 128×128

Mean Q-Values (higher = better)

1:1 1.428 0.651 0.934 1.639 1.104 2.354
2:1 1.838 0.975 1.296 1.474 1.211 2.720
3:1 1.869 1.458 1.574 1.483 1.137 2.279
1:2 1.338 1.592 1.324 2.335 1.879 3.402
1:3 1.530 1.364 1.574 1.965 2.894 3.179

Table: Compliance cost ratio for mean Q-values: > 1 means compliance increases learned value
estimates.

Key Findings:

Compliance usually increases mean Q-values, with gains up to ∼3.4× in the best settings.
Only 3 of 30 configurations show CCQ < 1 (slightly lower Q-values under norms).
Largest boosts occur for B:R = 1:2 or 1:3 with more BLUE drones and larger grids,
suggesting norms help focus value learning in harder scenarios.
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GUARDIAN: Action Entropy
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Figure: 64×64 grid: 16, 32, 64 BLUE drones.
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GUARDIAN: Action Entropy Compliance Cost

16 BLUE 32 BLUE 64 BLUE
B:R 64×64 128×128 64×64 128×128 64×64 128×128

Action Entropy (lower = better)

1:1 0.698 0.748 0.607 0.629 0.457 0.501
2:1 0.694 0.759 0.596 0.619 0.460 0.494
3:1 0.683 0.748 0.567 0.623 0.459 0.500
1:2 0.640 0.634 0.467 0.502 0.362 0.381
1:3 0.557 0.571 0.402 0.462 0.292 0.327

Table: Compliance cost ratio for action entropy: < 1 means compliance reduces entropy (more decisive
policies).

Key Findings:

All configurations have CCH < 1: norms consistently lower action entropy (policies less
random / more focused).
Strongest reductions (down to ∼0.29–0.33) occur for B:R = 1:3 with many BLUE drones,
indicating sharper decisions when defenders are outnumbered.
Entropy generally decreases as we move to more challenging B:R settings, suggesting
norms help prune noisy behaviors.
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GUARDIAN: Norm Combinations
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(a) 64×64 grid, 16v16 drones
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(b) 64×64 grid, 32v32 drones
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(c) 64×64 grid, 64v64 drones

Figure: Test rewards across norm combinations in symmetric (1:1) competitive scenarios. Lines
represent mean performance with standard deviation bands.
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Limitations: Dataset and Generalizability

DEWS & STATE Limitations:

Single-city dataset (The Hague)
349 trajectories over 8 months
May not generalize to:

War zones (Ukraine)
Different urban layouts
Different drone types

Mitigating Factors:

Key predictor (asset values) doesn’t depend on drone
Tested with three distributions (LTP, MTP, HTP)
STATE designed to generalize to unseen regions
Expert evaluation validates generalization

GUARDIAN Limitations:

2D grid (no altitude)
RED as non-learning baseline
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Limitations: Incrementally Adding New Norms

Question: Can new norms be added without retraining?

Current Answer: No – retraining is required

Why Retraining is Necessary:

1 CAS computation happens at each timestep

2 Norms affect action masking during training

3 New norms change feasible action space

4 Policy must relearn optimal behavior in new space

Future Work:

Transfer learning for norm updates

Modular policy architectures

Incremental norm incorporation
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Limitations: Training Parameters

Question: Why 5,000 episodes? Why these parameters?

5,000 Episodes Justification:

Standard RL practice for multi-agent environments

Observed convergence in learning curves (typically by episode ∼4,000)
Computational constraint: 630 hours with DRs vs 80 hours without

Other Fixed Parameters:

Parameter Value Rationale

Grid sizes 64×64, 128×128 Standard benchmarks
Battery 100 units Reasonable operational constraint
View range 5 cells Balance realism/tractability
Fire range 1 cell Close-range engagement
Communication 80% success Models realistic unreliability
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Q&A: Why Not Use Speed in Trajectory Definition?

Question: Your trajectory definition has no speed. Isn’t that a limitation?

Answer:

Acknowledged limitation (mentioned in dissertation)

Current definition:

τ = {wj = (latj , longj , hj)|j = 1, . . . ,Mτ}

Why acceptable for our work:
DEWS extracts speed as derived features from timestamps
STATE focuses on spatial patterns, not temporal dynamics
Altitude variations captured in hj

Future work:
Extend to include timestamps: (latj , longj , hj , tj)
Model velocity and acceleration patterns
Enable temporal trajectory generation
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Q&A: Why Disjoint Train/Test Regions?

Question:“A disjoint from C” – what does this mean?

Context: STATE training vs. testing regions

Answer:

Training regions A and testing regions C are disjoint
No overlap between where we train and where we test
This is critical for validating generalization

Why this matters:

If A ∩ C ̸= ∅: Model might memorize specific regions
Disjoint regions ensure model learns general patterns
Validates STATE’s use case: generating for unmonitored areas

From dissertation:
“This mirrors our use case for STATE: synthesizing plausible drone trajectories for
regions where no flight data is available.”
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Q&A: Dual-Use Concerns

Question: Could STATE be misused to plan attacks?

Answer:

Acknowledged concern (mentioned in dissertation limitations)
Mitigating factors:

STATE designed for defense testing, not attack planning
Requires asset value annotations (controlled by authorities)
Generating trajectories ̸= operational capability
Similar dual-use exists in all security research

Responsible disclosure:
Developed with Dutch Police input
They understand and accept the research
Benefits to defense outweigh risks

Privacy protections:
Features can exclude identifying information
Compatible with privacy-preserving approaches
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Q&A: Why Binary Threat Classification?

Question: Why only safe vs. threatening? What about medium threats?

Answer:

DEWS handles multiple levels:
LTP: Low-threat prediction (score < 4)
MTP: Medium-threat prediction (score ∈ [4, 8))
HTP: High-threat prediction (score ≥ 8)

STATE uses binary for simplicity:
Proof of concept for conditioned generation
Binary distinction is most operationally relevant
Multi-class generation is straightforward extension

Operational reality:
Security responses are often binary (intervene or not)
Medium threats can be handled by adjusting threshold
DEWS provides continuous threat scores for nuance
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Q&A: Why Not Reward Shaping?

Question: Why use hard constraint enforcement instead of reward shaping for compliance?

Answer:

Reward shaping: Violations incur penalties but remain possible

Agent may learn to “accept” penalty for high-reward violations
No formal guarantee of compliance
Sensitive to penalty magnitude tuning

Hard constraints (our approach):
Infeasible FSSs never explored during training or execution
Formal guarantee: all policies are compliant by construction
Reduces search space (can improve learning)

Our experiments show: Hard constraints can actually improve performance at scale.
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Q&A: Why RL Instead of Pareto Optimization?

Question: POSS uses Pareto optimization. Why doesn’t GUARDIAN?

Pareto Optimization (POSS):

Static: One decision point

Objectives fixed a priori

No feedback from environment

Optimal for this moment

Use case: Single resource allocation

RL (GUARDIAN):

Sequential: Many decisions

Learn from outcomes

Environment feedback (rewards)

Optimal over trajectory

Use case: Multi-step game

Key: Defense is inherently sequential. Today’s action affects tomorrow’s state. RL captures
this; static Pareto doesn’t.
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Q&A: What GUARDIAN Keeps from POSS

GUARDIAN uses POSS for constraint enforcement, not optimization.

Component From POSS? Purpose in GUARDIAN
Deontic operators (P, O, F, Do) ✓ Specify legal constraints
Status set definition ✓ Structure for action bundles
Feasibility conditions ✓ Check legal compliance
Closurealgorithm ✓ Compute minimal legal set
FSS enumeration ✓ Find all legal options

Multi-objective functions × Replaced by RL reward
Pareto dominance check × Replaced by Q-learning

Summary: POSS provides the “constraint engine”; RL provides the “policy engine.”
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