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The Emerging Drone Threat

= @NN World Africa Americas Asia Australia China Europe India More - evaeh @ sen Q ([EElg senm

EEEEEEEEEEEEEEEEE

Investigations launched after more unexplained
drone sightings off two European coasts

By Tim Lister and Billy Stockwell
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The Emerging Drone Threat

Drone proliferation creates security challenges Notable Incidents
@ Terror groups actively use drones (ISIS, Hezbollah, e Gatwick Airport (2018):
PKK) 1,000+ flights canceled

e Saudi Aramco Attack (2019):

@ State-sponsored warfare (Ukraine, India-Pakistan $2B damage to oil facilities

2025) e Jammu Air Force (2021):
o Critical infrastructure attacks (Saudi oil refineries, First drone attack on Indian military
2019) o Ukraine Conflict (2022-ongoing):

Thousands of drone strikes on cities

e India-Pakistan (2025):
o Legitimate vs. malicious drone flights Drone warfare escalation

Urban environments face complex airspaces

@ Real-time threat assessment required

o Legal and ethical constraints on responses



Central Research Question

Overarching Challenge

How can autonomous systems defend regions from drone attacks while maintaining legal and
ethical compliance?

Four Core Research Problems:
@ Early Threat Detection: Distinguish threats from benign flights within seconds
© Data Scarcity: Generate realistic threat trajectories when real data is scarce
© Legal Reasoning: Make decisions that satisfy all applicable legal/ethical constraints
@ Adaptive Defense: Learn effective strategies while maintaining strict compliance

This dissertation makes significant progress towards each of these four problems.



L
Problem 1: Early Threat Prediction (DEWS)

Drone Threat Prediction Problem (DTPP)

Given the first j seconds of a live trajectory and drone metadata, classify whether the flight
will become threatening.

Motivation:
@ Security officials need actionable intelligence in 30 seconds
@ Limited observation data for decision-making
@ Must balance false positives (disrupting legitimate flights) vs. false negatives (missing
threats)
Our Solution: DEWS—Drone Early Warning System
@ First system for early drone threat prediction from partial trajectories
@ Achieves F; > 0.80 within 30 seconds of observation
@ Validated on real data from The Hague with Dutch police
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Problem 2: Threat-Conditioned Trajectory Generation (STATE)

Data Scarcity Problem

Real threat trajectory data is scarce. How can we generate realistic synthetic data for training
and testing defense systems?

Motivation:
o Few real-world threat trajectories exist
@ Privacy and security constraints limit data sharing
o Need diverse scenarios across different geographic regions
Our Solution: STATE—Safe and Threatening Adversarial Trajectory Engine
@ cGAN-based architecture for threat-conditioned trajectory synthesis
@ Generates realistic trajectories over unseen regions
@ 35.8% improvement in Fl-score vs. baselines (expert validated)
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Problem 3 & 4: Compliant Defense (GUARDIAN)

The Compliance Gap

Standard RL maximizes reward without considering legal norms. How can defenders act
legally while learning to be effective?

Motivation:
@ Must reason about complex deontic rules (obligations, permissions, prohibitions)
@ Need to ensure all actions are compliant before execution
@ Learn effective policies within the compliant action space

Our Solution: GUARDIAN—Governance-Unified Aerial Reinforcement-Defense
@ Uses deontic logic to specify drone warfare legal/ethical constraints
@ Leverages feasible status set computation algorithms from prior work
@ Integrates FSS-based action masking with multi-agent RL
o Counterintuitive finding: Compliance can improve defensive performance
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Upcoming Section

© DEWS: Drone Early Warning System



DEWS: Problem Formulation

Drone Threat Prediction Problem (DTPP)

Given the first j seconds of a live trajectory 7 and drone metadata, classify whether the flight
will become threatening.

Formal Definition: Threat Thresholds:
o Trajectory: 74 = ((¢¢,t1),...,(¢9, tn)) o Low: score < 4 (61% of data)
e Temporal restriction: tr(74,J) @ Medium: score € [4,8) (27%)
@ Threat score: y(74) € [1,10] e High: score > 8 (12%)

o Learn: fi, : (d, tr(74,7)) — {0, 1}, where

Key Research Focus:
f(d,tr(r4,j)) = 1 if threat > lev

Analyze earliness vs. accuracy tradeoff
Observation Windows:

j € {1,5,10,20, 30, 60,180,360} seconds

11/48



- 00000 ocewsDowEaWammgSeem |
DEWS: Real-World Dataset (The Hague)

Dataset (provided by Dutch Police): Dataset Statistics by Threat Level
@ 8 months: Dec 2020 — Jul 2021
@ 349 trajectories from The Hague

Metric Low Med High

Trajectories 213 94 42
. Duration (s) 265 298 286
o 18 distinct drones observed Distance (m) 435 988 752
e Avg. flight: 5 min / 750 m traveled Altitude (m) 63 116 101
Speed (km/h) 7.1 146 104

@ Senhive RF sensors (25 km radius)

Expert Annotation:

@ Dutch police & municipality experts ]
First real-world drone threat dataset
@ Inter-annotator agreement: xk = 0.772

(substantial)

@ Anonymized for public release
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. DEWs:DroneEalyWemingSystem
DEWS: System Overview

assets Annotation Tool Feature Extraction Threat Classification
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Figure: DEWS Architecture. Data set preparation involves annotating asset values and drone trajectories by police.
Subsequently, DEWS extracts features and trains 11 classifiers My, --- , M11 to yield 11 predictions which are integrated
using late fusion to predict the final threat level. During operational use (after training), an initial part of a live trajectory
is processed to extract features, and the combination of single predictors and late fusion produces the final threat score.




. DEWs:DroneEalyWemingSystem
DEWS: Feature Engineering

Six Feature Categories (Total: 110 features)

@ Basic Flight Parameters @ No-Fly Zone (NFZ) Compliance
e Waypoint counts, duration e Intrusion flags
e Spatial spread, bounding box e Min distance to restricted areas
@ Drone Capabilities o % time in NFZ
o Max payload, battery capacity © Asset-Value Features
e Top speed, range e Max/mean/cumulative values
O Altitude & Speed Metrics e Ground asset importance
o Min/mean/max/percentiles O Historical Similarity
e Ground speed profiles e self and cross-similarity with past

trajectories
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DEWS: Performance Results

Key Findings
© Rapid Early Warning
e F; > 0.80 after 30 seconds
o Precision > 90%, Recall ~ 75%
o Peaks at F; = 0.96 (6-min prefix)
@ Late Fusion Superiority

o Consistently beats all 11 base models
e Robust across observation windows

© Key Feature Insight

o Asset-value features are #1 predictor
o Where a drone flies matters

@ Operational Efficiency

e 3-second end-to-end latency
e Actionable time buffer for response

1 60 180 360 720
time threshold (s)

—8— adaboost —&— knn —8— random_forest
decision_tree logistic_regression svm

—0— extra_trees —e— mip —o— wide_n_deep
gradient_boosting naive_bayes late fusion

High-Threat F; score vs. observation window
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. DEWs:DroneEalyWemingSystem
DEWS: Summary

Contributions:

o First system for early drone threat prediction from partial trajectories
@ Novel integration of geospatial asset values into threat assessment
@ Ensemble approach achieving 0.80+ F1 within 30 seconds

Practical Impact:
@ Enables proactive defense planning
@ Reduces operator cognitive load

@ Provides actionable time buffer for counter-measures

Limitation: Single-city dataset (The Hague) — Motivates STATE
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Upcoming Section

© STATE: Safe and Threatening Adversarial Trajectory Engine
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_ STATE:Ssfeand Threatening Adversarial Trajectory Engine
STATE: Problem Formulation

Trajectory Representation:

7= {w; = (latj,long;, h;) | j=1,..., M}

Threat-Conditioned Trajectory Generation
Learn a generative model G such that:

Q:(A,é,z)—m-

where A is any geographical region, e {0,1} is the target threat class, and z is a latent
noise vector.

Key Objective: Generate trajectories over unseen regions while preserving threat-specific
behavioral patterns learned from available data.
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STATE: Data Representation Module

® FYY o Fy ® F

FA e RHXWXB

<>
Official Web Sources Security Expert OpenStreetMap

Figure: The target geographical region A is represented with a multi-channel feature tensor, including
the No-Fly Zone Map F\F%, the Population Density Map FfP, the Satellite Imagery F3!, the Street
Map F5T, and the Asset Value Map F4V.
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STATE: Waypoint Generator

Waypoint Generator G: A
G:(F,0,z) = # € {0,1}1W

Architecture:
o CLIP-based encoder: F € RHXWx9 _, X c RD»
o Threat encoder: § — X; € RP»
o Latent noise: z ~ N(0,14) — X, € RP»
e Concatenation: X' = [Xr & X; & X;] € R¥D»

o Decoder: Transposed conv layers — 7 € {0,1}128%128

Trajectory Validity Discriminator MV : (7, F,0) — pY € [0, 1]
@ Distinguishes real from synthetic trajectories
@ Ensures generated trajectories match real data distribution



_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Threat Alignment Network and Training

Pre-trained classifier M ensures threat consistency (based on DEWS)

MT(#,F) = pl = P(B|7,F) €0,1]

@ Pre-trained threat classifier
@ Ensures generated trajectories match target threat label

o Fixed during generator training

Training Strategy:
o MYV is trained adversarially with G
e MT fixed during GAN training (not adversarial)
@ Provides auxiliary loss: L5 = Ay Ly v + ATL 7



_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Adversarial Training Dynamics

( )

v
Lg }‘ """""""""""" !
R X Trajectory | ! v
< {0,1} ' > validiy | | ?f)e [0,1]
i ”| Discriminator
1 MV
> Waypoint % 7€ {0,1} W
zeR? > Generator . @ >
0 Threat
F, € REXWx9 : Alignment | _{7 €[0,1]
A I Network !
: '
€ femmmmmmme :




_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Trajectory Reconstruction Module

Challenge: Convert unordered planar projection 7 to temporal trajectory 7

Temporal Sequencing Process:

@ Identify contour Q of largest connected component in 7
Q={w,wy,...,w}

@ For all waypoint pairs (ws, we) € Q with d(ws, we) < &:
o Generate candidate trajectory 7 via stochastic random walk
o Creates set [ = {m,ms,..., 7.} where L = (})

@ Select best trajectory using MT:

* T
— F
T = arg mwe:a[%(./\/l (m, F)

Altitude Assignment: Conditional on threat class 0 (drawn from the learned distribution)



STATE: Trajectory Reconstruction Visualization

et g e

Random Walk T
i arg max M" (-
Contour Detection Generator g o ()

MTJ
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_ STATE:Safeand Threatening Adversarial Trjectory Engine
STATE: Comparison with Baselines

Evaluation Metrics (lower is better):
o MDE (Mean Distance Error): spatial accuracy

e SSIM (Structural Similarity): trajectory diversity
@ JSD-AV: asset value distribution similarity
@ JSD-TL: trajectory length distribution similarity
MDE | SSIM | JSD-AV | JSD-TL |
Method Threat  Safe | Threat Safe | Threat Safe Threat  Safe

Random Walk | 17.38 15.04 | 0.928 0.953 | 0.0065 0.0042 | 0.054 0.025
Monte Carlo 1540 1442 | 0944 0960 | 0.0051 0.0061 | 0.050 0.023

LSTM 525 319 | 0.882 0907 | 0.0045 0.0052 | 0.027 0.017
VAE 9.61 10.71 | 0.978 0.940 | 0.0025 0.0038 | 0.043  0.019
Traj-GAN 829 652 | 0.856 0.826 | 0.0040 0.0043 | 0.028 0.017
STATE | 127 1.62 | 0.661 0.664 | 0.0010 0.0020 | 0.015 0.005

Table: Lower is better. STATE achieves 75.8% improvement over LSTM on threatening trajectories.



_ STATE:Safeand Threatening Adversarial Trajectory Engine |
STATE: Expert Evaluation on Unseen Regions

S etu p: Embedding Space of the Generated Trajectories
i i A L) R ® M-E Agree (T)
@ Generated 200 trajectories over unseen regions T vt
° L] . ° R ° O M-E Mismatch (NT)
@ 100 per model (STATE, VAE), 50 safe + 50 s et e e e
threatening gt .O I
@ Two Dutch police officers independently annotated i GRS P
F1-Score S I o o o
Method | 6 =0 =1 Acc. S S N
VAE ‘ 0.857 0.522 ‘ 0.780 ©-SNE Dimension 1
STATE | 0.888  0.709 | 0.839 t-SNE of STATE embeddings. Filled =
A | +3.6% +35.8% | +7.6%

model-expert agreement; Hollow =

disagreement.
Key Result: STATE generalizes to unseen regions with 35.8% F1 improvement on

threatening trajectories vs. VAE



_ STATE:Ssfeand Threatening Adversarial Trajectory Engine
STATE: Contributions and Limitations

Contributions: Limitations:
@ Novel cGAN architecture for @ Single-city evaluation (The Hague)
threat-conditioned trajectory synthesis e Binary threat classification
@ Dual feedback: realism + threat alignment ¢ Relies on pre-trained threat classifier
@ Outperforms 5 baseline methods o Dual-use considerations
@ Addresses data scarcity for rare threats
@ Enables testing in unmonitored areas

Next Challenge: Given threat detection, how should defenders respond? — GUARDIAN



Upcoming Section

@ GUARDIAN: Governance-Unified Aerial Reinforcement-Defense
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GUARDIAN: The Core Challenge

The Compliance Gap in RL:
e Standard RL: 7* = arg max, E[reward)]
o Legal/ethical norms N\ are external

@ High-reward actions may violate laws

Blue HQ

Real-World Challenge:

o BLUE team (defenders) must comply with
norms

e RED team (attackers) ignores norms BLUE vs. RED scenario over Paris

@ Question: Does compliance disadvantage
BLUE?
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GUARDIAN: Motivating Example

Scenario

50 70 | 50 | 40 Legend:
°

(O Blue drone

50 | 60 | 20 50 (O Red drone

[J CCTV

5x5 urban grid

Green cells: civilian areas

60 40 90 Civilian area @ Values: infrastructure importance
? 70 60 ? Cell values: @ R1: Red drone in high-value cell
infrastructure _
importance @ B1, B2: Blue defenders
90| 80 ] 80 50 40 Ethical Constraints

@ Norm 1: No firing in civilian areas unless
immediate threat

@ Norm 2: Obligatory to fire when
high-value neighbors at risk

@ = Multiple feasible actions
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GUARDIAN Foundation: Deontic Logic Framework

Deontic Operators specify normative status of actions:

Pa Action « is permitted

Oa  Action « is obligatory (must do)
Fa Action « is forbidden

Doa  Action « will be executed

Deontic Rules encode legal/ethical constraints:
SA+—x & SA; & ... & S5A,

where x is a conjunction of state atoms

We’'ll see concrete examples on the next slide.
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_ GUARDIAN: Governance-Unified Aerial Reinforcement-Defense
GUARDIAN: Deontic Rules

Example Rules for BLUE Drones:
@ Never fire at cells:
F FireAtCell 4(i,j) < Blue(d)

@ Prohibit friendly fire:
F FireAtDroney(d") <— Blue(d) A Blue(d') A SameTeam(d, d’)

© Prohibit firing in civilian areas (unless immediate threat):
F FireAtDroney(d") < Blue(d) A Red(d") A CivilianArea(i,j) A ~Immediate Threat(d")

@ Obligate engagement when neighbors are high-value:
O FireAtDroney(d") +
Blue(d) A Red(d") A ImmediateThreat(d") A AllNeighborsAbove(i, j, t, \)

8 total rules developed based on suggestions from security experts.
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Status Sets

Status Set (SS): A set of ground status atoms specifying the deontic status of each action.
Example Status Set for drone d:

Ss, — P MoveTo4(3,4), Do MoveToy(3,4),
97\ P FireAtDroney(d'), F FireAtCell4(3,4)

Key Question: Is a status set feasible? That is, does it satisfy all deontic rules, constraints,
and logical consistency requirements?
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Feasible Status Set (FSS): Definition

Feasible Status Set
A status set SSy is feasible if it satisfies all 8 conditions: J

@ OacSSy=PacSS; (obligations imply permission)

@ Oa € SS; = Doa € SS;  (obligations must be done)

© Doa € SS; = Pa €SS,  (done actions must be permitted)

©Q Pa €SSy =Fa¢SSy (no permission-prohibition conflict)

@ Pa € SS4 = preconditions of « satisfied  (physical feasibility)

@ SS, is closed under operating rules Ny (rule closure)

@ {a | Doa € 554} satisfies action constraints AC  (action consistency)
@ Resulting state satisfies integrity constraints IC  (state consistency)

Key Output: The Concurrent Action Set (CAS):
Xssd = {a | Doa € 55,;/}

This is the set of actions drone d will actually execute.
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From FSS to Dynamically Masked Action Space

Current State
Sa(t)

Integrity
Constraints

FSS

Set of CASs
Computation

{X1,Xo,...}

Deontic Norms

N

Action
Constraints
Result: Each CAS is a legally compliant combination of actions.
Dynamically Masked Action Space:
Ay(s) = {Xss | SS € Fq(s)}

The drone can only select from these compliant action sets.
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GUARDIAN: Integrating FSS with Reinforcement Learning

Use FSS computation to dynamically mask the RL action space.

RL with Dynamically Masked Actions
At each state s, the drone optimizes:

74 = arg maxE [Z Y Ry(s(t), X(t))
d t=0

Subject to: X(t) € Aq4(s(t)) at every step.

Result:
@ Infeasible FSSs are never explored during training
@ Infeasible FSSs are never executed during deployment
@ Learned policies are compliant by construction
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GUARDIAN: Learning Architecture

Two-Level Hierarchy:

@ Drone Level: Independent Q-Learning with action masking

Qa(sd, X) =E |Rg+~ max Qu(sy,X’)
X'eAy(s))
o HQ Level: QMIX for centralized training, decentralized execution

Qtot(sHQa a) = f(Qd17 sy Qdm; SHQ)

Key Property: Even HQ cannot override drone compliance.
@ HQ suggests actions; drones verify feasibility via FSS

o If HQ suggestion violates norms, drone substitutes feasible alternative
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GUARDIAN: Experimental Setup

Grid Configuration Blue:Red Ratios

o Grid sizes: 64x64, 128x128 e 1:1 (symmetric)

o Cell values: v;;(0) € [0,100] e 2:1, 3:1 (defender advantage)

@ 3 CCTV cameras (view range 10) e 1:2, 1:3 (attacker advantage)
Drone Parameters Training

@ Blue drones: 16, 32, 64 @ Deep Independent Q-Learning

o Battery capacity: 100 units @ QMIX for HQ coordination

o Payload: 3 units @ 5,000 episodes

o View range: 5, Fire range: 1 @ Stochastic communication (80%

success)

Metrics: Reward, City Protection, Win Rate, Q Values, etc.



GUARDIAN: Reward
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Figure: 64x64 grid with 16, 32, and 64 BLUE drones

Three Critical Observations:

(Obs 1) Compliance generally worsens performance (expected)

(Obs 2) On 64x64 grid with 32 and 64 BLUE drones, compliance improves performance when RED drones are majority
(1:2, 1:3 ratios)

(Obs 3) Larger problems = compliance reward approaches or exceeds non-compliance



GUARDIAN: City Protection
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Key Finding: Compliance improves city protection in most cases (up to 31.3% improvement)
Only 4 of 30 configurations show degradation.
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GUARDIAN: Compliance Cost Analysis

: . ___ Performance with Norms
Comphance Cost: CC = Performance without Norms

16 BLUE 32 BLUE 64 BLUE
B:R | 64x64 128x128 | 64x64 128x128 | 64x64 128x128

City Protection (higher = better)

1:1 0.860 1.025 0.967 1.044 1.156 1.165
2:1 0.962 1.012 1.082 1.196 1.209 1.283
3:1 0.980 1.083 1.152 1.214 1.187 1.313
1:2 1.041 1.025 1.076 1.092 1.120 1.106
1:3 1.109 1.009 1.076 1.032 1.076 1.093

Table: Compliance cost ratio: > 1 means compliance improves performance.
Key Findings:
e Compliance improves city protection in most cases (up to 20.9% improvement)
@ Only 4 cases show degradation (up to 14%)
@ Hence, deontic constraints often help rather than hurt defense
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GUARDIAN: Computational Efficiency

Per-Step Decision Time (ms)

Drones | Comp CAS QMIX
16 Yes 215.6 23.7
16 No 0 15.3
32 Yes 446.8 26.2
32 No 0 23.6
64 Yes 554.9 70.8
64 No 0 41.6

Observations

@ CAS computation: 2.6 increase (16—64 drones)

@ QMIX inference: 3x increase
@ Total: 625.7ms for 64 drones

@ Real-time capable

Training Time
@ 5,000 episodes, 64x64 grid, 64 drones
@ With norms: ~630 hours
@ Without norms: ~80 hours
@ Overhead: 7.9x for training
@ Acceptable for offline training

Key Takeaway
@ Training overhead significant
@ But inference remains real-time
@ Practical for deployment

@ Legal compliance worth the cost
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GUARDIAN: Summary of Findings

Counterintuitive Result:
Legal compliance does not necessarily handicap defenders

Key Insights:

@ Reduced Search Space: Constraints focus exploration on viable policies

@ Implicit Curriculum: Deontic rules guide learning for complex problems

© Asymmetric Advantage: RED faces full complexity; BLUE has structured search
@ Scale-Dependent: Benefits most pronounced at larger problem scales

© Practical Viability: 625.7ms decision time enables real-time deployment

Broader Implications:
@ Hard constraints can facilitate learning (not just constrain it)

@ Formal compliance guarantees achievable without sacrificing effectiveness
@ Challenges assumption that “tied hands” = tactical disadvantage
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Upcoming Section

© Conclusion
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Concluding Remarks

Central Message:

Regional airspace can be defended proactively and responsibly through integration of
prediction, legal reasoning, and learning.

Key Takeaway:
@ Legal compliance is not a handicap
@ Constraints can facilitate learning at scale

@ Formal guarantees + effectiveness are achievable

Interdisciplinary approach is essential

Vision:

Autonomous defense systems that are simultaneously effective, compliant, adaptive,
transparent, and subject to meaningful human oversight

This dissertation makes significant progress towards this vision.
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Thank You!

Questions & Discussion

Tonmoay Deb
tonmoay.deb@northwestern.edu

Department of Computer Science
Northwestern University
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Future: DUCK 3D Simulation Environment Testbed

Figure: Three-screen view: (L) Blue/RHQ commands, (C) Ground-truth Unreal rendering, (R) Sensor overlays + Ul



DUCK Testbed Architecture

Ensure that all
Agents execute all
actions at timesteps
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Integrity Constraints (IC) & Action Constraints (AC)

Integrity constraints ensure system consistency and safety. They must hold in the resulting
state.

IC;: Engagement Within Firing Range

< FireAtDroney4(d’) A —InFireRange(d,d’)

“Cannot fire at a drone that is out of range”

Action constraints define permissible combinations of concurrent actions within a single time
step.

AC;: Single Target Engagement

< FireAtDroney(d1) N FireAtDroney(d2) N di # do

“Cannot engage multiple targets simultaneously”
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Computing Feasible Status Sets: LSS

Least Status Set (LSS) Algorithm: Computes the minimal status set that satisfies all
deontic closure conditions.
Key Steps:
© Initialize: Start with initial constraints (e.g., HQ orders)
@ Enforce deontic closure:
e If Oa € S5: add Pa and Do«
o If Doa € SS: add Pa
© Apply operating rules: For each rule whose body is satisfied, add the head
@ Check for contradictions:
o If both Pa and Fa exist: return L

o If Pa but precondition false: return L
o If denial constraints violated: return L

© Repeat until fixpoint reached

Output: Minimal baseline status set, or L if no compliant option exists.



NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.



NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.



NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

1. DC < {denial constraints in AC}

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.



Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

1. DC < {denial constraints in AC}

2. LSSy + LSS(SSHg, Sa(t), N4, DC)

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.
@ Line 2: Compute Least Status Set via LSS (try with HQ orders first).



Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold
1. DC < {denial constraints in AC}
2. LSSy + LSS(SSHg, Sa(t), N4, DC)
3. if LSSy = L then LSSy + LSS(0, Sy(t), Ny, DC)

@ Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.
@ Line 2: Compute Least Status Set via LSS (try with HQ orders first).
@ Line 3: If HQ conflicts with norms, retry without HQ orders.
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Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,

IC, AC, Actions A4(t), Threshold

DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, <+ LSS(0, S4(t), N4, DC)
. if LSSy = L then return L

PN

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.



NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,

IC, AC, Actions A4(t), Threshold

DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, <+ LSS(0, S4(t), N4, DC)
. if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

aprwWNR

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
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Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold
. DC < {denial constraints in AC}
. LSSy + LSS(SShq, S4(t), N4, DC)
. if LSSy = L then LSS, <+ LSS(0, S4(t), N4, DC)
. if LSSy = L then return L
Ay < {ag | Pre(ay) false OR Fay € LSSy}
. SAy +— SA(.Ad) \ (57:1 @]} LSSd)

oA WNR

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
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Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, + LSS(0, S4(t), Ny, DC)
. if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

. SAy +— SA(.Ad) \ (57:1 @]} LSSd)

SA4-Do + {Doay | Doay € SA4}

No o hwWN R

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
Lines 7-8: Key Step: Separate Do atoms from F/P/O atoms.
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Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions A4(t), Threshold

. DC < {denial constraints in AC}

. LSSy + LSS(SShq, S4(t), N4, DC)

. if LSSy = L then LSS, + LSS(0, S4(t), Ny, DC)
if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

. SAy +— SA(.Ad) \ (57:1 @]} LSSd)

SA4-Do + {Doay | Doay € SA4}

. SAd-FPO — SAd \ SAd-DO

ONO AW

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
Lines 7-8: Key Step: Separate Do atoms from F/P/O atoms.



NS
Ethical Status Set Computation Algorithm: Initialization & Setup

Input: HQ orders SSyq, State Sy4(t), Norms Ny,
IC, AC, Actions Ay4(t), Threshold 7

DC < {denial constraints in AC}

. LSSy + LSS(SSHg, Sa(t), N4, DC)

. if LSSy = L then LSS, + LSS(0, S4(t), Ny, DC)

. if LSSy = L then return L

Ay < {ag | Pre(ay) false OR Fay € LSSy}

. SAy +— SA(.Ad) \ (57d @]} LSSd)

SA4-Do + {Doay | Doay € SA4}

SAd-FPO — SAd \ SAd-DO

. Tolnspect + {LSS4U X | X C SA4-FPO}; Result + 0

COENSOOAWNR

Lines 1-2: Gather inputs: HQ orders, state, norms, constraints.

Line 2: Compute Least Status Set via LSS (try with HQ orders first).
Line 3: If HQ conflicts with norms, retry without HQ orders.

Line 4: If still L, no compliant option exists.

Line 5: Identify infeasible actions (preconditions fail or forbidden).
Lines 7-8: Key Step: Separate Do atoms from F/P/O atoms.

Line 9: Initialize BFS frontier with all FPO combinations.
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Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.



NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.



Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.



Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do

11. Candidates < Tolnspect; Tolnspect < ()

12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.



Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do

11. Candidates < Tolnspect; Tolnspect < ()

12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do

14. Add FeasSet, to Result

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.



Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then

13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
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Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then

13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result

15. if |Result| = T then return Result

16. else

@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.



NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).



NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).
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Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
19. Add (Cand, U {Doay}) to Tolnspect
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).
@ Line 19: BFS: one Do atom per expansion step.
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Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
19. Add (Cand, U {Doay}) to Tolnspect
20. end while
v
@ Line 10-11: Loop until no candidates OR collected 7 feasible sets.
@ Line 12: Check feasibility against IC and AC.
@ Lines 13-15: Collect feasible sets into Result.
@ Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).
@ Line 19: BFS: one Do atom per expansion step.



NS
Ethical Status Set Computation Algorithm: BFS Expansion & Termination

10. while Tolnspect # () and |Result| < T do
11. Candidates < Tolnspect; Tolnspect < ()
12. if some SS € Candidates are feasible under IC & AC then
13. for each feasible FeasSet, in Candidates do
14. Add FeasSet, to Result
15. if |Result| = T then return Result
16. else
17. for each Cand, in Candidates do
18. for each Doay € (SA4-Do \ Candy) do
19. Add (Cand, U {Doay}) to Tolnspect
20. end while
21. return Result
v

Line 10-11: Loop until no candidates OR collected 7 feasible sets.

Line 12: Check feasibility against IC and AC.

Lines 13-15: Collect feasible sets into Result.

Lines 16-19: Key: Expand by adding only Do atoms (not all status atoms).

Line 19: BFS: one Do atom per expansion step.

Line 21: Return all collected feasible status sets Fy = {551,585, ...} — set of feasible status sets.
Each FSS yields a Concurrent Action Set: Xss. = {a | Doa € SS;}

7/39



o badwpSlides
POSS: Proof Overview

Three Key Complexity Results in POSS Chapter:
@ Proposition (Membership): Deciding if a status set is a Pareto-optimal feasible status
set is in co-NP
@ Theorem (Hardness): Deciding if a status set is a Pareto-optimal feasible status set is
co-NP-hard
© Proposition (Closure): The Closure algorithm runs in polynomial time

Why these results matter:
@ Establishes computational complexity bounds for decision problems
@ Justifies the need for heuristic algorithms in practice
@ Provides theoretical foundation for GUARDIAN's use of POSS



e
POSS: Membership in co-NP (Proposition)

Claim: Deciding if a status set SS is Pareto-optimal feasible is in co-NP.
Proof Intuition (5 Steps):
O Feasibility Check: Verify SS satisfies all 8 conditions of Definition (feasible status set) —
this is polynomial time
@ Complementary Problem: “Is SS NOT Pareto-optimal?” is in NP because:

e We can guess a witness status set SS’ that dominates SS
o Verify SS’ is feasible (polynomial time)
o Verify SS’ dominates SS on objective functions (polynomial time)

© Verification: Given witness SS’, check Vf € OF : f(SS’) > f(SS) and
af : £(SS') > £(SS)
@ Polynomial Verification: All checks are polynomial in problem size

© Conclusion: Since complement is in NP, original problem is in co-NP



POSS: co-NP-Hardness (Theorem) — Part 1

Claim: Deciding if a status set is Pareto-optimal feasible is co-NP-hard.
Proof Strategy: Reduction from 3-Colorability (known NP-complete)
Step 1: Problem Setup

e Given graph G = (V,E)

@ Question: Can G be 3-colored? (adjacent vertices different colors)
Step 2: Reduction Construction

@ Actions: For each vertex v € V:

e coloring,(v, c1), coloring,(v, c;), coloring (v, c3) — color assignments
o dummycoloring,(v, c1) — dummy action
o vertex,(v) — vertex activation

@ Objective function: (SS) = |{Do coloring,(v,c) € SS}|
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e
POSS: co-NP-Hardness (Theorem) — Part 2

Step 3: Integrity Constraints (encode graph structure)

e < coloring(X, C1) A dummycoloring(Y, (2)
(Can't have both real and dummy coloring)

o «+ edge(X, Y) A coloring(X, C) A coloring(Y, C)
(Adjacent vertices can't share colors — encodes edge constraints)
@ « coloring(X, c1) A coloring(X, c2) (each vertex gets one color)
Step 4: Key Equivalence
G is 3-colorable < 35S’ with f(SS’) = |V| < empty SS is NOT Pareto-optimal

Step 5: Conclusion
Since 3-colorability is NP-complete, determining if SS is Pareto-optimal is co-NP-hard.
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POSS: Corollary — co-NP-Completeness

Corollary: Under fixed program, constraints, and polynomial objectives, POSS membership is
co-NP-complete.

Proof:

@ Upper bound: Proposition 1 shows membership in co-NP
@ Lower bound: Theorem 1 shows co-NP-hardness
© Therefore: co-NP-complete

Practical Implication:

@ Unless P = NP, no polynomial algorithm exists
e Motivates approximate/heuristic algorithms

@ Our algorithms exploit problem structure for practical efficiency
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POSS: Closure Complexity

Proposition: Under fixed program and constraints, Closure runs in polynomial time.
Proof Sketch:

Q Initialization: O(]A|) where A is action set
@ Main loop iterations:

o Each iteration adds at least one status atom
e Maximum status atoms: O(]A|)
o Therefore: O(|A]) iterations

© Per-iteration cost:

o Rule application: O(|P]) for fixed program P
o Conflict checking: O(|DC]) for fixed denials

@ Total: O(|A| - (|P]|+ |DC|)) = polynomial

13/39
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POSS Algorithms: POSS-WAM (Weakly Anti-Monotonic)

Key ldea: Traverse lattice of status sets bottom-up (BFS)
Why this works for anti-monotonic functions:
o If S5 C 5SSy, then f(S551) > £(SS2) (anti-monotonic)
@ Smaller status sets have higher (better) objective values
@ So start from smallest (LSS) and expand only if needed

Algorithm Flow:
@ Compute LSS = minimal status set satisfying rules
@ |If LSS feasible and Pareto-optimal, return it
© Otherwise, expand by adding one status atom at a time
@ At each level, check for feasible Pareto-optimal sets
© First feasible set found is Pareto-optimal (due to anti-monotonicity)

Efficiency: Avoids enumerating all 214! possible status sets



e
POSS Algorithms: POSS-SAM (Strongly Anti-Monotonic)

Key Difference from POSS-WAM:
@ Strongly anti-monotonic: only Do atoms affect objective value
e {a|Doa € S51} C {a|Doa € SS5,} = £(551) > £(5S2)
Algorithm Optimization:
© Separate status atoms into:

e SA-Do = {Doa} atoms
e SA-FPO = {Fa,Pa,Oa} atoms

@ Initialize with all FPO combinations: {LSS U X|X C SA-FPO}
© Expand by adding only Do atoms (not all status atoms)

@ This reduces search space significantly

Intuition: Since only Do atoms affect objectives, we can freely add FPO atoms without
changing Pareto-optimality comparisons.
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DEWS: No-Fly Zone Feature Computation

Data Source: godrone.nl (Dutch no-fly zone database)

Distance Computation: Haversine formula for GPS coordinates

d = 2r - arcsin (\/Sin2 <A2¢> 4 cos(¢1) cos( o) sin? (A2/\>>

where r = Earth’s radius, ¢ = latitude, A = longitude

Six NFZ Features Extracted:
© enter noflyzone: Binary flag (1 if trajectory entered any NFZ)
@ perc_noflyzone: Percentage of waypoints inside NFZ
© nf_d min: Minimum distance to nearest NFZ boundary
Q nf_d max: Maximum distance to nearest NFZ boundary
© nf_d_mean: Mean distance to nearest NFZ
@ nf_d_std: Standard deviation of NFZ distances

Surprising Finding: NFZ features less important than expected; asset values dominate.




DEWS: Late Fusion Formula

where:
e M;(t) = probability prediction from classifier i that trajectory t is threatening
@ w; = weight assigned to classifier /
o Y11 w; = 1 (weights normalized)
Weight Optimization:
@ Grid search over weight combinations
@ Objective: maximize overall Fl-score on validation set
@ Final weights emphasize classifiers with complementary errors

Why Late Fusion Works:
@ Ensemble reduces variance and improves robustness
o Consistently outperforms all 11 individual classifiers
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DEWS: Runtime Analysis

Two-Phase Runtime:
@ Feature Extraction: Slight increase with observation window

e More waypoints = more computation
o Still sub-second for all windows

@ Prediction (Late Fusion): Constant regardless of trajectory length
o Fixed number of features (110)

e Same 11 classifiers regardless of input size
Why 3 seconds total runtime is acceptable:
o DEWS is early warning, not real-time interception
@ +7% F1 improvement over best single classifier

@ Enables proactive defense planning
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DEWS: Why F1 Drops at Intermediate Windows

Finding 2: Increasing observation window does NOT always improve performance

Observed Pattern:
@ 5s: Recall = 0.789, Precision = 0.934
@ 30-60s: Slight decline in both metrics

@ 180s+: Performance improves again
@ Peak at 360s (6 min)

Explanation: Trajectory Heterogeneity

@ At bs: Only fast-moving, clearly threatening trajectories captured — high precision
o At 30-60s: Mix of:

o Fully-observed short trajectories (complete information)
o Partially-observed long trajectories (incomplete information)
e This heterogeneity creates classification noise

o At 180s+: Most trajectories fully characterized — cleaner signal

Dataset Statistics: Avg. trajectory duration 265-298 seconds
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STATE: Why CLIP Encoder?

Answer: CLIP provides powerful visual feature extraction

Ablation Study Results:

Configuration ‘ MDE (Threat) MDE (Safe)
Full STATE (CLIP) 1.27 1.62
STATE w/o CLIP (histogram) 13.34 19.94
STATE w/o F (no geography) 8.64 6.25

Key Insight: Histogram encoding is WORSE than no geography!
Why CLIP works for our task:
@ O-channel tensor F (satellite, street map, NFZ, population, assets) is complex
@ CLIP’s pre-training on diverse image-text pairs — robust features
@ Simple encoders cannot capture high-level spatial correlations
o CLIP generalizes to “atypical” visual inputs like our geographic features
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STATE: Loss Components and Weights

Combined Generator Loss:
Le=A-Lyv+AT-LT

Component Roles:

@ Ly (Trajectory Validity Loss):
o Feedback from discriminator MY
o Ensures generated trajectories look realistic
e “Can this fool the discriminator?”

@ L7 (Threat Alignment Loss):
o Feedback from pre-trained classifier M T
o Ensures trajectories match target threat class
o "Does this look threatening/safe as intended?”

Weight Rationale (\y = 0.6, A7 = 0.4):
@ Ay > A7: Prioritize realism (unrealistic trajectories useless)
@ Too high A7r: Generator places disproportionate waypoints in NFZ
@ Balance determined empirically
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STATE: Why Keep M Static?

Design Choice: M is pre-trained and fixed, NOT adversarial

Evidence from Adversarial Training Analysis:

Beginning of Training: End of Training;:
o Uses threat label 8 effectively @ MYV can no longer separate threat classes
@ Clear separation in embedding space o Prioritizes features for real/fake distinction

.. . @ Threat semantics lost
Critical Insight:

“MV' prioritized features that do not depend on threat semantics to distinguish real
from synthetic.”

Solution: Separate threat-aware feedback via static M T
o M7 always knows what “threatening” looks like
@ Decouples realism from threat alignment
@ Both objectives jointly optimized by generator
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Statistical Methods Used

All Key Results Are Statistically Significant
Method: Mann-Whitney U-test

@ Non-parametric test (no normal distribution assumption)
@ Compares two independent samples

@ Appropriate for our experimental data
Bonferroni Correction:

@ Adjusts for multiple hypothesis testing

@ If testing n hypotheses at significance a:

(6%
Qcorrected = —

@ Prevents false positives from multiple comparisons
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STATE: Statistical Significance Results

Table Caption: “*** indicates statistical significance (Bonferroni-corrected p-value < 0.001)"

Key Significant Results:

Comparison ‘ Metric Values Significance

STATE vs LSTM | MDE (threat) 1.27 vs 5.25 | p < 0.001***
STATE vs LSTM | MDE (safe) 1.62 vs 3.19 | p < 0.001***
STATE vs VAE MDE (threat) 1.27 vs 9.61 | p < 0.001***
STATE vs all SSIM 0.66 vs >0.85 | p < 0.001***

Quote from Dissertation:
“All hypotheses tested in this chapter report Bonferroni-corrected p-values, obtained
with Mann-Whitney U-test, to adjust for multiple hypothesis testing.”
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GUARDIAN: Mean Q-Values
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Figure: 64x64 grid: 16, 32, 64 BLUE drones.
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GUARDIAN: Mean Q-Value Compliance Cost

16 BLUE 32 BLUE 64 BLUE
B:R | 64x64 128x128 | 64x64 128x128 | 64x64 128x128

Mean Q-Values (higher = better)

1:1 1.428 0.651 0.934 1.639 1.104 2.354
2:1 1.838 0.975 1.296 1.474 1.211 2.720
3:1 1.869 1.458 1.574 1.483 1.137 2.279
1:2 1.338 1.592 1.324 2.335 1.879 3.402
1:3 1.530 1.364 1.574 1.965 2.894 3.179

Table: Compliance cost ratio for mean Q-values: > 1 means compliance increases learned value
estimates.

Key Findings:
@ Compliance usually increases mean Q-values, with gains up to ~3.4x in the best settings.
@ Only 3 of 30 configurations show CCq < 1 (slightly lower Q-values under norms).
@ Largest boosts occur for B:R = 1:2 or 1:3 with more BLUE drones and larger grids,
suggesting norms help focus value learning in harder scenarios.



GUARDIAN: Action Entropy
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Figure: 64x64 grid: 16, 32, 64 BLUE drones.
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GUARDIAN: Action Entropy Compliance Cost

16 BLUE 32 BLUE 64 BLUE
B:R | 64x64 128x128 | 64x64 128x128 | 64x64 128x128

Action Entropy (lower = better)

1:1 0.698 0.748 0.607 0.629 0.457 0.501
2:1 0.694 0.759 0.596 0.619 0.460 0.494
3:1 0.683 0.748 0.567 0.623 0.459 0.500
1:2 0.640 0.634 0.467 0.502 0.362 0.381
1:3 0.557 0.571 0.402 0.462 0.292 0.327

Table: Compliance cost ratio for action entropy: < 1 means compliance reduces entropy (more decisive
policies).
Key Findings:
@ All configurations have CCy < 1: norms consistently lower action entropy (policies less
random / more focused).
@ Strongest reductions (down to ~0.29-0.33) occur for B:R = 1:3 with many BLUE drones,
indicating sharper decisions when defenders are outnumbered.
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GUARDIAN: Norm Combinations
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Figure: Test rewards across norm combinations in symmetric (1:1) competitive scenarios. Lines
represent mean performance with standard deviation bands.



Limitations: Dataset and Generalizability

DEWS & STATE Limitations:
@ Single-city dataset (The Hague)
@ 349 trajectories over 8 months
o May not generalize to:
o War zones (Ukraine)
o Different urban layouts
o Different drone types

Mitigating Factors:

e Key predictor (asset values) doesn't depend on drone

@ Tested with three distributions (LTP, MTP, HTP)

@ STATE designed to generalize to unseen regions

@ Expert evaluation validates generalization
GUARDIAN Limitations:

e 2D grid (no altitude)

@ RED as non-learning baseline
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Limitations: Incrementally Adding New Norms

Question: Can new norms be added without retraining?
Current Answer: No — retraining is required
Why Retraining is Necessary:

@ CAS computation happens at each timestep

@ Norms affect action masking during training

© New norms change feasible action space

@ Policy must relearn optimal behavior in new space

Future Work:
@ Transfer learning for norm updates
@ Modular policy architectures

@ Incremental norm incorporation
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Limitations: Training Parameters

Question: Why 5,000 episodes? Why these parameters?
5,000 Episodes Justification:
@ Standard RL practice for multi-agent environments
@ Observed convergence in learning curves (typically by episode ~4,000)

@ Computational constraint: 630 hours with DRs vs 80 hours without

Other Fixed Parameters:

Parameter | Value | Rationale

Grid sizes 64x64, 128x128 | Standard benchmarks

Battery 100 units Reasonable operational constraint
View range 5 cells Balance realism/tractability

Fire range 1 cell Close-range engagement
Communication | 80% success Models realistic unreliability
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Q&A: Why Not Use Speed in Trajectory Definition?

Question: Your trajectory definition has no speed. Isn't that a limitation?

Answer:
e Acknowledged limitation (mentioned in dissertation)
@ Current definition:

7 = {w; = (latj,long;, hj)|j = 1,..., M;}

@ Why acceptable for our work:
o DEWS extracts speed as derived features from timestamps
e STATE focuses on spatial patterns, not temporal dynamics
o Altitude variations captured in h;

o Future work:
o Extend to include timestamps: (lat;, long;, hj, t;)
o Model velocity and acceleration patterns
e Enable temporal trajectory generation
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Q&A: Why Disjoint Train/Test Regions?

Question: “A disjoint from C" — what does this mean?

Context: STATE training vs. testing regions
Answer:
@ Training regions A and testing regions C are disjoint

@ No overlap between where we train and where we test
o This is critical for validating generalization

Why this matters:

e If ANC # (): Model might memorize specific regions

@ Disjoint regions ensure model learns general patterns

o Validates STATE's use case: generating for unmonitored areas
From dissertation:

“This mirrors our use case for STATE: synthesizing plausible drone trajectories for
regions where no flight data is available.”
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Q&A: Dual-Use Concerns

Question: Could STATE be misused to plan attacks?

Answer:

e Acknowledged concern (mentioned in dissertation limitations)
o Mitigating factors:
o STATE designed for defense testing, not attack planning
o Requires asset value annotations (controlled by authorities)
o Generating trajectories # operational capability
e Similar dual-use exists in all security research
@ Responsible disclosure:
e Developed with Dutch Police input
o They understand and accept the research
o Benefits to defense outweigh risks
o Privacy protections:
o Features can exclude identifying information
o Compatible with privacy-preserving approaches
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Q&A: Why Binary Threat Classification?

Question: Why only safe vs. threatening? What about medium threats?

Answer:

o DEWS handles multiple levels:
o LTP: Low-threat prediction (score < 4)
e MTP: Medium-threat prediction (score € [4,8))
e HTP: High-threat prediction (score > 8)

o STATE uses binary for simplicity:
e Proof of concept for conditioned generation
e Binary distinction is most operationally relevant
e Multi-class generation is straightforward extension

o Operational reality:
o Security responses are often binary (intervene or not)
e Medium threats can be handled by adjusting threshold
o DEWS provides continuous threat scores for nuance
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Q&A: Why Not Reward Shaping?

Question: Why use hard constraint enforcement instead of reward shaping for compliance?

Answer:
@ Reward shaping: Violations incur penalties but remain possible

o Agent may learn to “accept” penalty for high-reward violations
e No formal guarantee of compliance
e Sensitive to penalty magnitude tuning

e Hard constraints (our approach):

o Infeasible FSSs never explored during training or execution
e Formal guarantee: all policies are compliant by construction
o Reduces search space (can improve learning)

Our experiments show: Hard constraints can actually improve performance at scale.
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Q&A: Why RL Instead of Pareto Optimization?

Question: POSS uses Pareto optimization. Why doesn't GUARDIAN?

Pareto Optimization (POSS): RL (GUARDIAN):
@ Static: One decision point @ Sequential: Many decisions
@ Objectives fixed a priori @ Learn from outcomes
@ No feedback from environment e Environment feedback (rewards)
@ Optimal for this moment e Optimal over trajectory
Use case: Single resource allocation Use case: Multi-step game

Key: Defense is inherently sequential. Today's action affects tomorrow’s state. RL captures
this; static Pareto doesn't.
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Q&A: What GUARDIAN Keeps from POSS

GUARDIAN uses POSS for constraint enforcement, not optimization.

Component From POSS? | Purpose in GUARDIAN
Deontic operators (P, O, F, Do) v Specify legal constraints
Status set definition v Structure for action bundles
Feasibility conditions v Check legal compliance
Closurealgorithm v Compute minimal legal set
FSS enumeration v Find all legal options
Multi-objective functions X Replaced by RL reward
Pareto dominance check X Replaced by Q-learning

Summary: POSS provides the “constraint engine”; RL provides the “policy engine.”
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