
NORTHWESTERN UNIVERSITY

Responsible Defense from Multi-Drone Attacks

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Tonmoay Deb

EVANSTON, ILLINOIS

March 2026

2

ABSTRACT

Responsible Defense from Multi-Drone Attacks

Tonmoay Deb

Commercial drones weaponized by non-state actors achieve attack success rates above

70%; yet existing counter-drone systems focus on detection, rather than threat assessment

and legally compliant response. This dissertation develops four systems for autonomous

urban drone defense.

DEWS (Drone Early Warning System) addresses the threat prediction problem by

classifying drone trajectories as threatening or benign based on initial flight segments.

The system integrates trajectory dynamics, drone capabilities, no-fly zone violations,

and asset-value mappings to enable threat assessment within operationally relevant time-

frames. Evaluation on 349 real-world trajectories provided by the Dutch Police over eight

months in The Hague demonstrates that DEWS achieves F1-scores exceeding 0.80 within

30 seconds of initial observation for high-threat classification. Performance improves with

longer observation windows, reaching precision of 0.967 and recall of 0.869 at six minutes.

Feature analysis reveals that asset-based features constitute the most predictive category,

3

indicating that threat assessment depends fundamentally on what infrastructure a drone

threatens rather than trajectory characteristics alone.

STATE (Safe and Threatening Adversarial Trajectory Engine) addresses the scarcity

of threatening trajectory data through conditional generative adversarial networks that

synthesize trajectories based on geographic context and threat intent. The architecture

employs a threat alignment network that enforces consistency between generated trajec-

tories and intended threat classes. When evaluated by law enforcement experts from The

Hague on trajectories generated for previously unseen regions, STATE achieves F1-scores

of 0.888 for safe and 0.709 for threatening trajectories, representing improvements of

3.62% and 35.8% respectively over variational autoencoder baselines. The system enables

security agencies to generate training data for regions lacking operational drone tracking

infrastructure.

POSS (Pareto-Optimal Status Sets) provides formal foundations for multi-objective

decision-making under legal constraints. The framework combines deontic logic to rep-

resent legal norms with Pareto optimization to identify action sets that are both legally

compliant and operationally efficient. POSS employs two-stage processing: first pruning

actions that violate legal constraints, then computing Pareto-optimal subsets from remain-

ing actions. While initially validated on autonomous vehicle scenarios, the framework’s

principles apply directly to drone defense contexts requiring similar tradeoffs between

operational effectiveness and regulatory compliance.

GUARDIAN (Governance-Unified Aerial Reinforcement-Defense In Accordance with

Norms) demonstrates the practical integration of legal and/or ethical constraints with

4

reinforcement learning for multi-agent drone coordination. The system combines POSS-

based constraint satisfaction with QMIX reinforcement learning to coordinate defensive

drone swarms. Experimental evaluation across varying grid sizes and drone ratios reveals

that incorporating legal constraints during training requires increased computation time

(630 hours versus 80 hours for 64 drones) compared to non-constrained training, but

maintains operational viability with decision times averaging 625.7 milliseconds. Results

indicate that compliance requirements can improve defensive performance in scenarios

where defenders are outnumbered, suggesting that constraints help focus policy explo-

ration on viable action spaces. These findings challenge assumptions that legal compliance

necessarily compromises tactical effectiveness in autonomous defense systems.

5

Acknowledgements

I would like to express my deepest gratitude to my advisor, Dr. V.S. Subrahmanian, for

his unwavering support and guidance throughout my doctoral journey. His mentorship

extended far beyond academic advising; he provided the flexibility and encouragement

that allowed me to pursue industry experience through internships, which significantly

enriched my research perspective and see the bigger picture of applicability. His open

mindedness toward balancing academic rigor with practical experience has been instru-

mental in shaping both my research and career trajectory.

I extend my sincere appreciation to my dissertation committee members: Dr. Larry

Birnbaum, Dr. Nabil Alshurafa, and Dr. Alberto Quattrini Li, who served as the external

committee member. Their insightful feedback, challenging questions, and constructive

criticism during my proposal and defense were invaluable in strengthening this work.

This dissertation would not have been possible without the contributions of numerous

collaborators across multiple institutions. I am profoundly grateful to Dr. Mingi Jeong

from Dartmouth College. Mingi was instrumental in helping building the DUCK testbed.

I owe a special debt of gratitude to Dr. Cristian Molinaro from the University of

Calabria, who significantly contributed to my understanding and development of the

POSS framework. His patience in answering my numerous queries and his willingness to

engage in lengthy discussions were essential to the success of that work. I also thank Dr.

Andrea Pugliese for his collaborative spirit and technical expertise on our joint projects.

6

I am grateful to Dr. Eugene Santos Jr. from Dartmouth College, Dr. Youzhi Zhang

from the Chinese Academy of Sciences, and Dolev Mutzari and Dr. Sarit Kraus from Bar

Ilan University for their valuable contributions to our collaborative research.

I wish to extend special thanks to Dr. Valerio La Gatta and Dr. Marco Postiglione,

whose contributions to this dissertation were extraordinary. Their tireless efforts in fa-

cilitating the collaboration with our government partners in the Netherlands were indis-

pensable to the success of the DEWS and STATE projects. They played a pivotal role in

coordinating with the Netherlands Police and the Municipality of The Hague, supporting

the data collection process, and contributing significantly to the preparation and writing

of our papers. Beyond their technical contributions, their friendliness, helpfulness, and

collaborative spirit made working with them a genuine pleasure.

I extend my heartfelt thanks to our collaborators in the Netherlands who made the

DEWS and STATE projects possible. From the Netherlands Police, I thank Sven de Laaf

and Odette Lemmens for their partnership and domain expertise. From the Municipality

of The Hague, I am grateful to Max van Meerten and Afke Neeleman for their contribu-

tions. I also acknowledge Dr. Roy Lindelauf and Herwin Meerveld from the Netherlands

Defence Academy for their valuable input and collaboration.

I am deeply thankful to my lab mates, particularly Lirika Sola and Natalia Denisenko,

for their camaraderie, intellectual discussions, and support throughout the ups and downs

of doctoral research. I also extend my gratitude to Dr. Saurabh Kumar, who was a

postdoctoral scholar in our lab before joining IIT Hyderabad. His encouragement and

guidance during the early stages of my doctoral journey helped me develop a clear vision

for planning and navigating the path toward completing my Ph.D.

7

I extend my appreciation to the Department of Computer Science at Northwestern

University and the Buffett Institute of Global Affairs for their administrative support and

resources throughout my doctoral program. I am also grateful to the faculty members

for whom I served as a teaching assistant; their flexibility with my research commitments

allowed me to balance my teaching responsibilities with my scholarly pursuits.

I would like to offer special thanks to my roommates, Sayak Chakrabarty and Dr.

Imon Banerjee, for their friendship and support during this journey. Sayak provided

valuable perspectives on industry careers that helped me think about my professional

future, while Imon offered thoughtful feedback on my dissertation proposal and defense

that proved extremely helpful during those critical milestones.

I would be remiss not to acknowledge those who first inspired my passion for research

during my undergraduate years in Bangladesh. I am deeply grateful to Dr. Mohammad

Rashedur Rahman and Adnan Firoze for their early mentorship and encouragement to

pursue research. I also extend my sincere thanks to Dr. Amin Ahsan Ali for fostering my

research interests during my time as his Research Associate.

Finally, and most importantly, I express my deepest gratitude to my family. To

my father, Alak Ranjan Deb, for his patience, encouragement, and emotional support

throughout the journey. To my mother, Shima Rani Shome, for her love, sacrifices, and

constant prayers for my success. To my wife, Arpita Datta, for standing by my side

through the struggles and triumphs of this journey. Her understanding, patience, and

encouragement during the long nights and stressful periods were immeasurable gifts. My

family’s support have been the foundation upon which all of my achievements rest.

8

Dedication

In loving memory of my late grandparents

Nemai Charan Dey and Dipti Rani Debi

I wish you were here to witness this moment.

This achievement is as much yours as it is mine.

9

Table of Contents

ABSTRACT 2

Acknowledgements 5

Dedication 8

Table of Contents 9

List of Tables 13

List of Figures 15

Chapter 1. Introduction 21

1.1. Motivation 22

1.2. Problem Statement and Research Agenda 26

1.3. Research Approach and Contributions 28

1.4. Dissertation Structure and Chapter Organization 35

1.5. Expected Contributions and Impact 36

Chapter 2. A Drone Early Warning System (DEWS) for Predicting Threatening

Trajectories 38

2.1. Introduction 38

2.2. Related Work 41

10

2.3. DTPP: Drone Threat Prediction Problem 42

2.4. DEWS Architecture 44

2.5. Experiments 47

2.6. Limitations and Future Work 55

2.7. Conclusion 56

Chapter 3. STATE: Safe and Threatening Adversarial Trajectory Engine 58

3.1. Introduction 58

3.2. Related Work 60

3.3. Problem Formulation 62

3.4. Methodology 63

3.5. Experiments 71

3.6. Conclusions, Limitations, & Future Work 86

Chapter 4. Declarative Logic-based Pareto-Optimal

Agent Decision Making 88

4.1. Introduction 89

4.2. Related Work 92

4.3. Motivating Example 94

4.4. Background: IMPACT Agents 98

4.5. Pareto-optimal (Feasible) Status Sets 105

4.6. Algorithms 111

4.7. Experimental Assessment 124

4.8. Choosing an Optimal Feasible Status Set 128

11

4.9. Limitations and Future Work 130

4.10. Conclusions 131

Chapter 5. GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

In Accordance with Norms 135

5.1. Introduction 136

5.2. Related Work 137

5.3. The GUARDIAN Framework 138

5.4. Combining Deontic Logic with RL 148

5.5. Experimental Assessment 162

5.6. Limitations and Future Work 170

5.7. Conclusions 171

Chapter 6. Future Directions and Conclusion 172

6.1. DUCK Implementation 172

6.2. DUCK Capabilities 173

6.3. Limitations and Future Directions 174

6.4. Conclusion 177

References 178

References 178

Appendix A. A Drone Early Warning System (DEWS) for Predicting Threatening

Trajectories 188

12

Appendix B. Declarative Logic-based Pareto-Optimal

Agent Decision Making 194

B.1. Proofs 194

Appendix C. GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

In Accordance with Norms 197

C.1. Structure of GUARDIAN 197

C.2. Incorporating Ethical/Legal Norms in GUARDIAN Framework 207

C.3. Solving the Ethics-Guided GUARDIAN MDPs 222

C.4. Assumptions in GUARDIAN Testbed 226

C.5. Additional Performance Metrics 232

C.6. Full Experimental Results 232

C.7. Impact of Norm Combinations on Performance 232

13

List of Tables

2.1 DEWS Dataset Statistics 44

3.1 Summary of drone trajectory attributes for Safe (θ = 0) and

Threatening (θ = 1) trajectories. Each entry reports the mean and

standard deviation (in parentheses). 72

3.2 Performance comparison between STATE, its variants, and baseline

methods on safe and threatening trajectories. Lower values are

better for all metrics. Best results are in bold, second-best are

underlined, ∗∗∗ indicates statistical significance (Bonferroni-corrected

p-value < 0.001). 79

3.3 Expert Evaluation: Post-hoc assessment of synthetic trajectories

generated with STATE and the VAE baseline. 85

4.1 Varying parameters (default values in bold). 124

4.2 Average performance gain vs. Baseline. 127

4.3 Average relative quality vs. Baseline. LSP is Lane Shift Penalty, EMP

is Exit Miss Penalty, and CSP is Change Speed Penalty. 128

5.1 Compliance cost when varying B:R ratio, grid size, and number of

BLUE drones. Note that “–” means that BLUE did not win. 167

14

5.2 Per-step decision time (milliseconds) on a 64x64 grid with 1:1 drone

ratio. 169

A.1 DEWS Features categories and descriptions (Part 1). 191

A.2 DEWS Features categories and descriptions (Part 2). 193

C.1 Compliance cost when varying B:R ratio, grid size, and number of

BLUE drones. 233

15

List of Figures

2.1 Sample drone trajectory with its 30-second restriction. The trajectory

data is from a real drone, but the city was altered for security reasons. 42

2.2 DEWS Architecture. Data set preparation involves annotating asset

values and drone trajectories by police. Subsequently, DEWS extracts

features and trains 11 classifiers M1, · · · ,M11 to yield 11 predictions

which are integrated using late fusion to predict the final threat

level. During operational use (after training), an initial part of a live

trajectory is processed to extract features, and the combination of

single predictors and late fusion produces the final threat score. 43

2.3 High-Threat Prediction (HTP) settings: Precision (a), Recall (b),

and F1-score (c) metrics are shown as functions of varying temporal

restrictions on the trajectories. The top row provides a zoomed-in

view of the results for shorter time windows (less than 30 seconds),

while the bottom row displays the complete range of observation

windows. 51

2.4 Ablation Study: F1-score under LTP (a), MTP (b) and HTP (c)

settings when removing one feature category. The dashed line

represents the scenario with all features. 53

16

2.5 Feature Relevance Analysis (HTP problem): relative frequency of

feature categories selected by classifiers across different temporal

restriction windows. 54

2.6 Runtime Analysis (HTP problem): Time (in seconds) for feature

extraction (left) and prediction using late fusion (right). 55

3.1 Three examples of threatening trajectories generated with STATE.

(a) Trajectory around Park Sorghvliet and surrounding districts,

terminating within a no-fly zone. (b) Trajectory traversing a sensitive

zone with multiple government buildings, also terminating in a no-fly

zone. (c) Trajectory beginning in a residential neighborhood and

performing perimeter surveillance around a sensitive institutional

complex without entering no-fly zones. 59

3.2 STATE’s Architecture: The Data Representation Module

represents the target geographical region A via a multi-channel

feature tensor, including the No-Fly Zone Map FNFZ
A , the Population

Density Map F PD
A , the Satellite Imagery F SI

A , the Street Map F ST
A ,

and the Asset Value Map FAV
A . Then, the Potential Waypoint Set

Generator takes geographic features FA, the target threat class θ̂,

and a noise vector z as input. It outputs a planar trajectory τ̂ that

is evaluated by the Trajectory Validity Discriminator MV network

which distinguishes real from synthetic trajectories, and the Threat

Alignment Network MT that ensures consistency with the intended

17

threat class. In this case, we are conditioning the generation process

on the threatening class, i.e., θ̂ = 1. 64

3.3 Temporal Sequencing: This module reconstructs a temporally

ordered trajectory τ from the binary planar projection τ̂ . It begins

by identifying the contour Ω of the largest connected component in

τ̂ . All waypoint pairs (ws, we) along the contour are used to generate

candidate trajectories via stochastic random walks, such that ws and

we are the starting point (in purple) and ending point (in red) of the

trajectory. Each candidate trajectory π ∈ Π is then evaluated using

the Threat Alignment Network MT to identify the trajectory most

aligned with the target threat class θ̂. 70

3.4 Distribution of values for the 92 assets annotated by three police

officers. 72

3.5 Adversarial Training: (a) Jensen-Shannon Divergence (JSD)

between the generated and real trajectory distributions over training

epochs, evaluated for both asset visit (blue) and trajectory length

(red) distributions; (b-c) The t-SNE visualizations of the embeddings

produced by MV after the first training epoch (b) and at the end of

training (c). Grey lines connect real trajectories with their synthetic

counterparts. 84

4.1 A highway represented as a matrix (cars traveling from left to right). 95

4.2 Red car’s agent program. 100

18

4.3 Runtimes obtained when varying: (top) number of cars of each color,

(bottom left) number of lanes, and (bottom right) highway length. 126

5.1 Example 1: A 5×5 urban defense scenario. Green cells represent

civilian areas with restrictions on engagement. Cell values indicate

infrastructure importance. At this time step, RED drone R1 has

infiltrated the highest-value civilian area while BLUE drones B1 and

B2 must decide their response under ethical constraints. 139

5.2 Overview of the GUARDIAN architecture. Drones and CCTVs (1)

share state information with both individual decision modules (2)

and headquarters (3). Each drone’s deontic logic module computes

feasible actions (CASs) to ensure ethical compliance before the

policy network makes decisions. The HQ aggregates global state

and provides coordination recommendations, but drones retain

autonomy to validate these against feasible status sets. Actions

execute in the environment (4), generating rewards that feed into the

learning layer (5) to update both individual drone and HQ policy

networks. This design enables centralized training with decentralized,

ethically-constrained execution. 146

5.3 Reward to BLUE. 166

5.4 Test rewards across norm combinations in symmetric (1:1) competitive

scenarios. Lines represent mean performance with standard deviation

bands. 168

19

6.1 Simplified DUCK Testbed Architecture for a single execution cycle

(timestep). 173

6.2 DUCK 3-Screen Demonstration. The middle screen visualizes GT.

Left and right screens show other technical details. 174

A.1 Low-Threat Prediction (LTP) settings: Precision (a), Recall (b),

and F1-score (c) metrics are shown as functions of varying temporal

restrictions on the trajectories. The top row provides a zoomed-in

view of the results for shorter time windows (less than 30 seconds),

while the bottom row displays the complete range of observation

windows. 189

A.2 Medium-Threat Prediction (MTP) settings: Precision (a), Recall (b),

and F1-score (c) metrics are shown as functions of varying temporal

restrictions on the trajectories. The top row provides a zoomed-in

view of the results for shorter time windows (less than 30 seconds),

while the bottom row displays the complete range of observation

windows. 190

C.1 City protection. 234

C.2 Win rate. 234

C.3 Threat neutralization steps. 235

C.4 Payload efficiency. 235

C.5 Action entropy. 236

20

C.6 Mean Q-values. 236

C.7 Test rewards across norm combinations in symmetric (1:1) competitive

scenarios. Lines represent mean performance with standard deviation

bands. 237

21

CHAPTER 1

Introduction

The world is increasingly populated by unmanned aerial vehicles (UAVs), commonly

known as drones. Originally developed for military reconnaissance and operations, drones

have rapidly transitioned into commercial, civilian, and recreational sectors, becoming in-

tegral to industries ranging from logistics and agriculture to disaster response, entertain-

ment, and real estate (101; 96). Major corporations such as Amazon, UPS, and Walmart

have invested heavily in drone delivery systems (125), while emergency services increas-

ingly rely on aerial surveillance to assess disaster zones and coordinate rescue efforts.

Insurance companies deploy drones to inspect properties and assess claims (124), and

sports arenas use them to capture dynamic footage of events. This widespread adoption

reflects the practical benefits drones offer: cost-effectiveness, versatility, and access to

locations difficult for humans to reach.

This technological revolution simultaneously introduces unprecedented security vul-

nerabilities. Off-the-shelf drones provide attack vectors that malicious actors exploit with

devastating effect. The dual-use nature of drone technology means that the same plat-

forms employed for benign commercial purposes can be readily weaponized or used for

malicious surveillance, making the challenge of distinguishing threats from legitimate op-

erations particularly acute.

This dissertation addresses a critical challenge at the intersection of artificial intel-

ligence, cyber-physical systems, and urban security: how to proactively defend densely

22

populated urban areas from hostile drone activities while maintaining legal and ethical

compliance.

1.1. Motivation

The widespread availability of drones has created a dangerous asymmetry. The same

technology enabling innovative commercial applications can be weaponized with minimal

technical expertise. This dual-use challenge manifests clearly in the actions of armed non-

state actors, such as ISIS (3), the PKK (108), Hezbollah (57), and Lashkar-e-Taiba1, who

have weaponized commercial drones for reconnaissance, targeted strikes, infrastructure

disruption, and psychological warfare operations.

The operational effectiveness of drone-based attacks is disturbingly high. ISIS fielded

drone swarms during the battle for Mosul (106). Hezbollah has conducted numerous

reconnaissance missions over Israeli territory using off-the-shelf unmanned systems (13),

while the PKK has utilized drones in attacks against Turkish security forces (108). The

2019 drone attacks on Saudi oil refineries2 demonstrated that even critical infrastructure

with sophisticated security systems remains vulnerable. Documented evidence indicates

that 76 drone attacks occurred globally before 2019, achieving a success rate exceeding

70% (5).

1https://www.indiatoday.in/india/story/drone-attack-initial-probe-lashkar-role-jammu-
and-kashmir-police-chief-1820679-2021-06-29
2https://www.nytimes.com/2019/09/14/world/middleeast/saudi-arabia-refineries-drone-
attack.html

https://www.indiatoday.in/india/story/drone-attack-initial-probe-lashkar-role-jammu-and-kashmir-police-chief-1820679-2021-06-29
https://www.indiatoday.in/india/story/drone-attack-initial-probe-lashkar-role-jammu-and-kashmir-police-chief-1820679-2021-06-29
https://www.nytimes.com/2019/09/14/world/middleeast/saudi-arabia-refineries-drone-attack.html
https://www.nytimes.com/2019/09/14/world/middleeast/saudi-arabia-refineries-drone-attack.html

23

This threat has intensified dramatically in recent years3. The May 2025 India-Pakistan

conflict4 and the ongoing conflict in Ukraine5 have witnessed extensive use of drones

for offensive operations and urban attacks, demonstrating that hostile drone activities

represent an immediate and evolving challenge.

Modern consumer drones amplify this threat. Today’s commercial platforms offer

flight times exceeding 30 minutes (18), operational ranges of several kilometers (49),

payload capacities sufficient for explosive devices (31), and autonomous navigation capa-

bilities requiring minimal operator skill (76). As technology advances, the barrier to entry

for drone-based attacks continues to diminish.

Even as drone interception techniques on sparsely populated regions improved re-

cently6, urban environments remain particularly challenging. Cities are characterized by

dense populations, critical infrastructure, high-value assets, and complex three-dimensional

spaces providing cover and concealment (15). A single weaponized drone penetrating ur-

ban airspace can threaten government buildings, transportation hubs, power infrastruc-

ture, or public gatherings within minutes. The physical density and vertical complexity

of urban terrain provide adversaries with numerous approach vectors while constraining

defenders’ ability to employ aggressive countermeasures without risking collateral damage.

The legitimate expansion of commercial drone operations in urban airspace compounds

this challenge. As package delivery (125), insurance assessments (124), and aerial photog-

raphy become routine, defenders face an increasingly difficult signal-detection problem:

3https://www.youtube.com/watch?v=DfCspYYPi5I
4https://www.bbc.com/news/articles/cwy6w6507wqo
5https://www.understandingwar.org/backgrounder/russian-drone-innovations-are-likely-
achieving-effects-battlefield-air-interdiction
6https://united24media.com/latest-news/ukraine-begins-mass-production-of-30-kilometer-
fiber-optic-drone-reel-8032

https://www.youtube.com/watch?v=DfCspYYPi5I
https://www.bbc.com/news/articles/cwy6w6507wqo
https://www.understandingwar.org/backgrounder/russian-drone-innovations-are-likely-achieving-effects-battlefield-air-interdiction
https://www.understandingwar.org/backgrounder/russian-drone-innovations-are-likely-achieving-effects-battlefield-air-interdiction
https://united24media.com/latest-news/ukraine-begins-mass-production-of-30-kilometer-fiber-optic-drone-reel-8032
https://united24media.com/latest-news/ukraine-begins-mass-production-of-30-kilometer-fiber-optic-drone-reel-8032

24

distinguishing malicious drones from benign operations. Legal and regulatory frameworks

governing urban drone operations remain fragmented across jurisdictions and often lag

technological capabilities (131). This regulatory complexity, combined with the impera-

tive to avoid false positives, renders the urban counter-drone problem distinctly challeng-

ing.

Technical approaches for countering UAVs have concentrated predominantly on de-

tection and tracking7. Radio frequency detection systems8 identify drone communication

signatures (13), radar systems track small aerial objects (61), and computer vision sys-

tems identify drones optically (71). While these detection modalities have matured, they

typically provide only binary presence information rather than assessing hostile intent or

threat severity. As defense experts at the Modern War Institute emphasize, "The earlier

you detect a threat, the sooner you can alert the force while air defense operators work

to defeat the threat."9

Detection alone is insufficient. Security agencies must distinguish threatening drones

from benign operations within seconds of detection, while managing dual risks: false

positives (disrupting legitimate activities) and false negatives (resulting in catastrophic

security failures). The critical challenge lies not merely in knowing a drone is present, but

in rapidly determining whether it poses a threat and formulating an appropriate response.

This assessment must occur within compressed timelines, often less than 5 minutes from

detection to potential impact (46).

7https://www.twz.com/air/ukraines-acoustic-drone-detection-network-eyed-by-u-s-as-
low-cost-air-defense-option
8https://www.zvook.tech/en
9https://mwi.westpoint.edu/understanding-the-counterdrone-fight-insights-from-combat-
in-iraq-and-syria/

https://www.twz.com/air/ukraines-acoustic-drone-detection-network-eyed-by-u-s-as-low-cost-air-defense-option
https://www.twz.com/air/ukraines-acoustic-drone-detection-network-eyed-by-u-s-as-low-cost-air-defense-option
https://www.zvook.tech/en
https://mwi.westpoint.edu/understanding-the-counterdrone-fight-insights-from-combat-in-iraq-and-syria/
https://mwi.westpoint.edu/understanding-the-counterdrone-fight-insights-from-combat-in-iraq-and-syria/

25

Existing counter-drone systems rarely incorporate the legal, regulatory, and ethical

constraints that must govern defensive actions in civilian environments. International

humanitarian law (126; 42), domestic aviation regulations (47), rules of engagement (60),

and collateral damage concerns impose strict limitations on permissible responses. An

autonomous defense system prioritizing effectiveness while disregarding these constraints

is potentially counterproductive, risking civilian casualties, legal liability, and erosion of

public trust. Defensive systems must answer not only "Can we stop this threat?" but also

"How can we stop this threat?"

The scarcity of comprehensive drone trajectory data compounds these technical and

normative challenges. Privacy regulations, operational security concerns, and nascent

monitoring infrastructure mean security agencies possess limited historical data about

both benign and threatening flights (59). This data scarcity constrains developing au-

tomated response, limits adversarial tactic exploration through simulation, and hinders

defensive system validation. The few threatening drone flights that have been documented

provide insufficient training data for robust predictive models.

These converging challenges define the problem space this dissertation addresses: oper-

ational drone threats from state and non-state actors, the urban signal-detection problem,

technical gaps in threat assessment, legal and ethical constraints on responses, and data

scarcity. When a drone appears in urban airspace, security personnel must answer urgent

questions:

• Is this drone’s flight pattern threatening or benign?

• What are its likely targets?

• What defensive actions are both effective and legally permissible?

26

• How can we train autonomous systems to make these determinations reliably?

• How can we test defensive strategies when real-world data on hostile flights is

scarce?

1.2. Problem Statement and Research Agenda

We now elaborate on the questions posed in the previous section. The central prob-

lem motivating this dissertation is: How can defenders rapidly identify threatening drone

trajectories in urban airspace, formulate legally compliant defensive responses, adaptively

learn effective counter-strategies, and overcome data scarcity limitations, all while operat-

ing under severe time constraints and ensuring actions satisfy legal and ethical norms?

This overarching problem decomposes into 4 interrelated research agenda items:

Research Agenda 1: Early Threat Prediction. Can we accurately distinguish

threatening drone trajectories from benign operations using only initial flight segments?

What is the minimum observation window required for reliable classification in opera-

tional settings? What features prove most predictive of hostile intent? Addressing these

questions is critical because urban drone threats unfold in less than 5 minutes from launch

to impact. Effective defense requires threat prediction early in the trajectory to enable

meaningful response options.

Research Agenda 2: Conditional Synthesis of Threatening Trajectories.

Given the scarcity of labeled threatening drone trajectory data, can we generate synthetic

datasets that exhibit realistic spatial patterns, temporal dynamics, and threat-specific

characteristics while capturing adversarial decision-making processes? How should tra-

jectory synthesis be conditioned on geography, asset locations, and threat intent to ensure

27

generated data represents both benign and threatening behaviors appropriately? What

validation methodologies establish that synthetic trajectories improve predictive model

performance despite limited ground truth data?

Research Agenda 3: Legally Compliant Multi-Objective Decision-Making.

How can we formalize international humanitarian law (126; 42), domestic aviation regu-

lations, and rules of engagement into computational representations enabling automated

reasoning in real-time defensive scenarios? When multiple defensive objectives conflict,

how can autonomous systems efficiently identify Pareto-optimal sets of actions balancing

competing considerations (95)? What computational frameworks provide both legal com-

pliance guarantees and actionable decision support under operational time constraints?

Research Agenda 4: Constrained Reinforcement Learning for Defense. Can

reinforcement learning agents learn effective multi-agent counter-drone policies through

interaction with realistic simulation environments while maintaining strict compliance

with legal constraints throughout the learning process? What architectural approaches

enable the integration of symbolic legal reasoning with neural policy learning? How should

reward structures be designed to encourage tactically sound defensive behaviors without

incentivizing norm violations?

These 4 research agenda items form an interconnected framework where advances in

one area enable progress in others. Early threat prediction provides a foundational capa-

bility upon which decision-making systems build. Legally compliant decision frameworks

guide the design of learning objectives. Synthetic data generation improves both threat

prediction accuracy and the diversity of scenarios encountered during policy training.

28

1.3. Research Approach and Contributions

As mentioned in the previous section, this dissertation presents an integrated frame-

work for responsible urban drone defense addressing the research agenda through 4 inter-

connected contributions. We now elaborate on them.

1.3.1. DEWS: Drone Early Warning System

The first contribution introduces the Drone Early Warning System (DEWS), a frame-

work for predicting whether drone trajectories are threatening based on initial flight seg-

ments (34). DEWS directly addresses Research Agenda 1 by demonstrating that accurate

threat classification is achievable within 30 seconds of flight commencement, providing de-

fenders with actionable intelligence while threats remain distant from potential targets.

DEWS’ predictive approach integrates multiple feature categories capturing trajectory

characteristics, drone capabilities, geography, and operational context. Basic trajectory

features describe flight duration, distance traveled, and altitude profiles. Drone capa-

bility features characterize payload capacity, maximum velocity, and endurance. No-fly

zone features quantify regulatory compliance. Critically, DEWS incorporates asset-based

features assessing the value of ground locations overflown, recognizing that threat severity

depends on what the drone threatens.

The DEWS architecture employs an ensemble of 11 classifiers spanning logistic regres-

sion, support vector machines, random forests, gradient boosting, and neural networks.

Each classifier undergoes feature selection to identify the most effective prediction fea-

tures. Late fusion combines classifier predictions, leveraging the complementary strengths

29

of different model families. The complete technical implementation and experimental

methodology are detailed in Chapter 2.

Extensive experimental validation using 8 months of real drone trajectory data col-

lected over The Hague by Dutch Police demonstrates DEWS’s effectiveness. The dataset

comprises 349 trajectories spanning recreational flights, commercial operations, and po-

tentially threatening scenarios. Each trajectory received a threat score on a scale from

1 to 10 based on assessments by police officers and municipal security officials, with Co-

hen’s kappa of 0.772 indicating substantial inter-annotator agreement. Using only the first

30 seconds of trajectory data, DEWS achieves F1-scores exceeding 0.85 for high threat

classification.

Ablation studies reveal that asset-based features, specifically the maximum value of

assets overflown, constitute the single most predictive feature category. This finding

highlights the importance of geographic context in threat assessment and motivates the

geographic conditioning approach employed in synthetic trajectory generation.

Systematic evaluation across observation windows from 5 seconds to 6 minutes char-

acterizes the fundamental tradeoff between earliness and accuracy. Prediction perfor-

mance improves rapidly during the first 30 seconds, plateaus between 30 seconds and

2 minutes, and exhibits minimal improvement beyond 3 minutes. This characterization

provides actionable guidance for operational deployment, suggesting defensive systems

should commence threat assessment at approximately 30 seconds post-launch.

30

1.3.2. STATE: Synthetic Trajectory Generation

The second major contribution addresses data scarcity through STATE (Safe and Threat-

ening Adversarial Trajectory Engine), a conditional generative modeling framework for

synthesizing realistic drone trajectories tailored to specific urban environments and threat

contexts. STATE addresses Research Agenda 2, recognizing that effective machine learn-

ing in drone defense is fundamentally constrained by limited access to training data,

particularly for threatening operations.

STATE’s generative architecture conditions trajectory synthesis on 3 categories of in-

formation: geographic context, threat intent, and stochastic variation. The geographic

context tensor encodes satellite imagery, road networks, building footprints, population

density, no-fly zone boundaries, and asset value maps for the urban region of interest.

This rich spatial representation enables STATE to generate trajectories that respect to-

pographic constraints, follow plausible navigation patterns, and exhibit threat-appropriate

relationships to valuable assets. The threat intent label explicitly conditions the genera-

tive process to produce trajectories matching the specified category. Latent noise variables

seed diversity, ensuring multiple synthesis runs produce distinct trajectories.

STATE’s novel architecture employs a variational autoencoder (VAE) architecture (58)

modified to incorporate conditional information at multiple stages. The encoder net-

work maps real trajectory exemplars into a learned latent space while conditioning on

geographic and intent information. The decoder network generates trajectories from la-

tent samples, conditioned on geography and intent. A novel critic module derived from

DEWS’ threat classification components provides additional supervision during training,

encouraging the generator to produce trajectories that DEWS would correctly classify.

31

This threat-alignment loss ensures synthetic threatening trajectories exhibit characteris-

tic patterns: proximity to sensitive assets, violations of airspace restrictions, and unusual

trajectory profiles. Chapter 3 provides comprehensive technical details of the architecture

and training procedures.

We validate the proposed method on a combination of quantitative distribution match-

ing metrics, qualitative expert assessment, and downstream task performance evaluation.

Distribution matching evaluates whether synthetic trajectories’ statistical properties align

with real data across both threatening and benign categories. Expert assessment by se-

curity personnel manually evaluates the qualitative realism and threat characteristics of

individual synthetic trajectories. Downstream task evaluation demonstrates that threat

prediction models trained on augmented datasets combining real and synthetic trajectories

outperform models trained only on real data, with improvements being most pronounced

for data-starved urban regions.

In summary, STATE extends the frontier of synthetic data generation for security ap-

plications by demonstrating that conditional synthesis of adversarial behaviors is feasible

when appropriately constrained by domain structure. The ability to generate threat-

conditioned trajectories for arbitrary urban regions enables defensive system development

and testing in locations where real threat data does not exist.

1.3.3. POSS: Pareto-Optimal Status Sets for Legally Compliant Decision-

Making

The third contribution addresses Research Agenda 3 through the Pareto-Optimal Sta-

tus Sets (POSS) framework, which formalizes decision-making for autonomous defensive

32

systems in the presence of legal and ethical compliance requirements (36). POSS recog-

nizes that effective drone defense requires not merely the technical capability to intercept

threats but also systematic reasoning about the legal permissibility, ethical justification,

and operational appropriateness of defensive actions.

POSS operationalizes legal and regulatory reasoning through 3 formal components:

deontic logic for representing normative concepts (50; 79; 53), multi-objective utility

functions for quantifying competing objectives, and Pareto optimization for identifying

non-dominated action sets (95). The deontic logic component employs modal opera-

tors (50; 79; 53), obligation (O), permission (P), and prohibition (F), to express legal

constraints in formal terms amenable to automated reasoning (105).

The multi-objective utility component recognizes that defenders simultaneously pur-

sue multiple goals: neutralizing threats, minimizing collateral damage to civilians and

infrastructure, preserving defensive capabilities, and maintaining proportionality between

threat severity and defensive response. POSS represents these objectives through sepa-

rate utility functions, explicitly maintaining the distinction among objectives and enabling

decision-makers to analyze tradeoffs.

The Pareto optimization component identifies the set of actions that are non-dominated

with respect to multiple objectives. In multi-objective optimization, a solution is Pareto-

dominated if there exists another solution that improves at least one objective without

degrading any other (95). The Pareto-Optimal Status Set represents the frontier of achiev-

able outcomes where improving one objective necessarily requires sacrificing another. Im-

portantly, POSS computes this set subject to legal constraints expressed in deontic logic,

pruning candidate actions to retain only those complying with all applicable prohibitions

33

and obligations before evaluating their placement on the Pareto frontier. This two-stage

process ensures the system never presents legally impermissible actions as viable options.

The formal foundations and algorithmic implementations are presented in Chapter 4.

Experimental validation of POSS employs autonomous vehicle scenarios as a testbed.

The validation uses highway driving scenarios where autonomous vehicles must navigate

multi-lane traffic while optimizing multiple objectives including lane shift penalties, exit

miss penalties, and speed change penalties, all while complying with traffic regulations

encoded in deontic logic. Comparative evaluation demonstrates that POSS algorithms

achieve substantial performance gains while maintaining legal compliance guarantees.

While this validation demonstrates POSS’s effectiveness in the autonomous vehicle do-

main, the framework’s principles of integrating deontic constraints with multi-objective

optimization apply directly to drone defense scenarios.

1.3.4. GUARDIAN: Learning-Based Defense with Legal Compliance

The fourth contribution synthesizes the preceding components into GUARDIAN (Governance-

Unified Aerial Reinforcement-Defense In Accordance with Norms), a reinforcement learning-

based defensive system designed to learn effective counter-drone policies while maintain-

ing legal and regulatory compliance. GUARDIAN directly engages Research Agenda 4

by demonstrating that adaptive learning and the satisfaction of legal requirements are

compatible objectives.

GUARDIAN’s architecture integrates 3 major components: a Markov Decision Pro-

cess (MDP) formulation (119) representing the sequential decision-making problem faced

by defenders, a multi-agent reinforcement learning algorithm discovering effective policies

34

through simulated experience, and a POSS-based action pruning mechanism restricting

policy search to legally compliant behaviors. The MDP formulation captures state space

encompassing positions and status of friendly and adversarial assets, observations from

sensor networks, and environmental factors. The action space includes movement com-

mands for defensive drones, sensor tasking decisions, and engagement authorization. The

reward function incentivizes threat neutralization while penalizing collateral damage, re-

source expenditure, and mission failures.

The multi-agent reinforcement learning component employs deep Q-networks (103)

extended to multi-agent settings, enabling coordination among heterogeneous defensive

assets with different capabilities and information access. Centralized training with decen-

tralized execution (107) allows agents to share experiences during learning while executing

independently during deployment.

The integration with POSS represents GUARDIAN’s most distinctive innovation. At

each decision point during both training and execution, POSS evaluates candidate actions

available to defensive agents, pruning to retain only those satisfying legal and regulatory

constraints given the current state. The reinforcement learning agent selects from this

constraint-satisfying action set, ensuring learned policies never explore legally impermis-

sible actions. This hard constraint enforcement contrasts with reward shaping approaches

where constraint violations incur penalties but remain possible. GUARDIAN’s approach

provides formal guarantees that deployed policies satisfy legal constraints by construction.

Validation employs extensive experiments within a purpose-built 2D grid-based testbed

across diverse configurations. The testbed simulates urban environments as grids of vary-

ing sizes, with experiments systematically varying the number of Blue team drones, the

35

ratio of Blue to Red drones, communication uncertainty with headquarters, and the com-

plexity of deontic constraints. Results demonstrate that GUARDIAN successfully learns

effective defensive policies while maintaining legal compliance. Comparison against uncon-

strained reinforcement learning baselines reveals that integrating legal constraints early

in the learning process produces policies with more stable training dynamics and, in cer-

tain scenarios particularly at larger problem scales, comparable or superior performance

to unconstrained approaches. This counterintuitive finding suggests hard constraints can

facilitate learning by focusing exploration on viable policy regions. The complete experi-

mental framework and results are detailed in Chapter 5.

GUARDIAN’s contribution advances safe reinforcement learning by demonstrating

that meaningful ethical and legal constraints can be formally integrated into the learning

process for complex multi-agent decision problems.

1.4. Dissertation Structure and Chapter Organization

This dissertation is organized into six chapters presenting an integrated framework

for responsible urban drone defense. Following this introduction, Chapter 2 presents

DEWS for early threat prediction from minimal trajectory observations, while Chapter 3

introduces STATE for conditional synthesis of realistic threat-conditioned trajectories to

address data scarcity. Chapter 4 develops the POSS framework for legally compliant

multi-objective decision-making using deontic logic and Pareto optimization. Chapter 5

extends the contribution into GUARDIAN, demonstrating that reinforcement learning

agents can learn effective multi-agent defensive policies while maintaining strict legal

compliance through POSS-based constraint pruning.

36

The concluding chapter synthesizes contributions, discusses limitations, and articu-

lates future research directions. During this research, we also developed DUCK (Drone

Urban Cyberdefense) (35), a photo-realistic three-dimensional simulation testbed built on

the Unreal Engine, providing supporting infrastructure for future system-level integration

and validation in operationally realistic environments. While DUCK does not constitute

a primary contribution, it demonstrates the feasibility of implementing the dissertation’s

components in realistic simulation settings and represents an important platform for future

work integrating DEWS threat predictions with GUARDIAN-learned policies operating

in three-dimensional urban environments.

1.5. Expected Contributions and Impact

This dissertation makes several contributions to the fields of security, artificial intelli-

gence, and autonomous systems.

Technical Contributions: The work advances threat prediction through DEWS’s

demonstration that accurate classification is achievable from minimal trajectory obser-

vations using real-world law enforcement data. STATE extends generative modeling

techniques to trajectory generation for security applications, introducing geographic and

threat conditioning that addresses the critical data scarcity problem. POSS provides a

principled framework for integrating legal constraints with multi-objective optimization,

offering both theoretical rigor and practical algorithms. GUARDIAN demonstrates the

architectural feasibility of reinforcement learning with hard constraint enforcement for

multi-agent coordination problems.

37

Empirical Contributions: Extensive experimental validation using real trajectory

data from European law enforcement, expert assessments by security personnel, and sys-

tematic component-level evaluation provides empirical evidence for the feasibility of re-

sponsible urban drone defense. DEWS’s characterization of tradeoffs between earliness

and accuracy offers actionable insights for operational deployment. STATE’s synthetic

data generation demonstrates measurable improvements in threat prediction when used

for training augmentation. POSS’s identification of Pareto-optimal action sets illustrates

the practical value of multi-objective optimization under constraints. GUARDIAN’s val-

idation establishes the architectural soundness of constrained reinforcement learning.

The framework presented represents meaningful progress toward responsible urban

drone defense systems designed to be simultaneously effective at neutralizing threats,

compliant with legal and regulatory constraints, adaptive to evolving adversarial tactics,

transparent in their decision-making processes, and subject to meaningful human over-

sight. This research demonstrates that these objectives are compatible and that progress

toward their realization is possible through rigorous interdisciplinary inquiry bridging

computer science, security studies, legal scholarship, and ethics.

38

CHAPTER 2

A Drone Early Warning System (DEWS) for Predicting

Threatening Trajectories

Over the last few years, there has been increasing use of drones by terror groups

and in armed conflict. Several technologies have been developed to detect drone flights.

However, much less work has been done on the Drone Threat Prediction Problem (DTPP):

predicting which drone trajectories are threatening and which ones are not. We propose

DEWS (Drone Early Warning System), a framework to solve this problem. Solving DTPP

early is key. Once a drone starts on its trajectory, we show that DEWS can make accurate

predictions within 30 seconds of the flight with an F1-score of over 80% on data about a

major European city. We study the tradeoff between earliness of predictions and accuracy.

We identify the key features that ensure good predictions.

2.1. Introduction

Terror groups such as ISIS (3), the PKK (108), Lashkar-e-Taiba1, and others are

increasingly using drones in various operations. Drones are also becoming a preferred

instrument of nation state warfare as evidenced by the war in Ukraine. There is now deep

concern that cities will be targeted by drone attacks (13).

1https://www.indiatoday.in/india/story/drone-attack-initial-probe-lashkar-role-jammu-
and-kashmir-police-chief-1820679-2021-06-29

https://www.indiatoday.in/india/story/drone-attack-initial-probe-lashkar-role-jammu-and-kashmir-police-chief-1820679-2021-06-29
https://www.indiatoday.in/india/story/drone-attack-initial-probe-lashkar-role-jammu-and-kashmir-police-chief-1820679-2021-06-29

39

However, the skies over a city are traversed by numerous drones. Realtors use drones

to get aerial shots of properties for sale(125), insurance companies use drones to look

for undeclared pools and property damage (124), sports arenas use drones to capture

crowd pictures and game plays (132), and more. A major problem for police and security

organizations around the world is to distinguish the few drones that pose a threat from

the many that are benign. And we need to do this as early as possible. As stated by

defense experts at the Modern War Institute at West Point2, “The earlier you detect a

threat (drone, rocket, missile, or artillery), the sooner you can alert the force to seek

shelter while the air defense operators work to employ their systems to defeat the threat”.

This is the problem that we address in this chapter: developing a machine learning

model that takes an initial part (e.g. the first 5, 10, 20, 30 seconds, . . .) of a drone

trajectory as input and predicts if it is threatening or not. The smaller the “initial” part,

the earlier we can bring a potentially threatening trajectory to the attention of security

agencies. But a small initial part might be too small to make a good prediction.

Though there has been a great deal of work on predicting trajectories of moving objects

(e.g. mobile phones (65), drones (101)), there has been relatively little work on quantifying

the threat posed to a city or geographic area by a drone. To quantify this threat, we must

not only understand the drone’s trajectory, but also the drone’s capabilities (e.g. payload,

battery life, max speed) and the value of the assets on the ground that the drone is flying

over.

2https://mwi.westpoint.edu/understanding-the-counterdrone-fight-insights-from-combat-
in-iraq-and-syria/

https://mwi.westpoint.edu/understanding-the-counterdrone-fight-insights-from-combat-in-iraq-and-syria/
https://mwi.westpoint.edu/understanding-the-counterdrone-fight-insights-from-combat-in-iraq-and-syria/

40

Our DEWS Drone Early Warning System predicts whether a drone trajectory is threat-

ening or not. DEWS tries to understand how long we need to observe a drone flight in

order to predict whether the drone poses a threat or not.

DEWS is novel in several respects. (i) As far as we know, DEWS is the first framework

to predict the threat a drone flight poses to a city. (ii) It is the first framework to

understand the tradeoff between the time for which a drone trajectory is observed (the

“observation window”) and threat prediction accuracy. (iii) In addition to the trajectory,

DEWS looks at features about the drone’s capabilities, violations of no fly zones, assets on

the ground, and more. (iv) DEWS identifies the key features linked to accurate predictions.

We find that the values of assets on the ground that a trajectory flies over constitute the

single most important feature in assessing the threat of the trajectory. (v) DEWS can

make predictions with an F1 score exceeding 0.8 in 30 seconds in operational use (after

training), suggesting that it can be used for real-time predictions. (vi) DEWS has been

tested by Dutch police, municipal, and security officials on 8 months of real trajectories

over The Hague and the results show an F1-score over 0.85.

This chapter is organized as follows. The "Related Work" Section discusses related

work. Next, Section "DTPP: Drone Threat Prediction Problem" formalizes the problem

studied. Our "DEWS Architecture" Section provides a detailed description of our archi-

tecture, including its features and training process. Section "Experiments" presents the

predictive performance of 11 ML models and a late fusion classifier) as the observation

(i.e. training) window increases. After this, a "Limitations and Future Work" section

describe limitations of the framework.

41

2.2. Related Work

Predicting the future location of a moving object has been explored in various domains

(52; 97). Vision-based object tracking methods (25) predict the future location of moving

objects. This work has been used in self-driving cars (97) to create plans based on

predicted future locations of humans and nearby moving objects. Other research uses

historical GPS data to predict mobility of devices (65).

Numerous papers predict vehicle trajectories by learning models from historical driv-

ing data (14). Temporal models such as LSTMs with attention networks (68; 83; 104)

have been proposed for trajectory prediction. Recent advances incorporate trajectories

of nearby vehicles to reduce accidents (64). Drone trajectory prediction has been widely

studied across various applications, including autonomous aerial cinematography (17),

delivery (101), and search and rescue (1).

There is also work on predicting a mobile phone’s next location based on historical

movement data (92; 91). These approaches include sequential pattern learning techniques

to predict a phone’s future location and/or human movements.

DEWS differs from past efforts in two respects. First, it predicts if a drone trajectory

is threatening or not, which past works don’t do. Second, DEWS is the first to study

how early in a trajectory we can make a good prediction. This is particularly important

because timeliness is key in mitigating drone threats. The identification of a threat is a

crucial input for the subsequent command and control process resulting in some kind of

intervention. DEWS not only obtains features from the drone trajectory, but also from

assets on the ground and the drone’s capabilities. Past work doesn’t consider assets on

the ground.

42

Recorded Point Trajectory

Figure 2.1. Sample drone trajectory with its 30-second restriction. The trajectory data is from
a real drone, but the city was altered for security reasons.

2.3. DTPP: Drone Threat Prediction Problem

Suppose C is a city to be protected. We obtain a map of C containing locations of

important national buildings, security installations (e.g., police stations, military bases),

government buildings, hospitals, tourist attractions, entertainment venues, homes, parks,

roads, bridges, utilities, etc.3 Once the city C is selected, we define an asset valuation

map V al(C), which assigns a value to every point within the city. High V al(C) values

corresponds to important locations.

Consider a drone d flying over C. Its trajectory τd is a finite sequence (ℓd1, t1), . . . , (ℓdn, tn)

where each ℓdi = (lati, longi, alti) is d’s location at time ti in terms of latitude, longitude

and altitude, respectively. The temporal restriction of a trajectory τd to time j, denoted

tr(τd, j), is the set {(ℓdi , ti) | (ℓdi , ti) ∈ t ∧ ti ≤ j}. We use T to denote a given set of

trajectories and we use tr(T , j) = {tr(τ, j) | t ∈ T } to be the restriction of the trajectories

3We used OpenStreetMap https://www.openstreetmap.org.

https://www.openstreetmap.org

43

Late
Fusion

Live
Trajectory

Basic

Drone Capability

Assets

No-fly zones

Speed

Observation History

Feature Extraction Threat Classification

features subset

models suite

Low threat (yes/no)

Intermediate threat (yes/no)

High threat (yes/no)

threat

threshold

3.5

5.5

7.5

Training data

Security Experts

Annotation Toolassets

trajectories

Figure 2.2. DEWS Architecture. Data set preparation involves annotating asset values and
drone trajectories by police. Subsequently, DEWS extracts features and trains 11 classifiers
M1, · · · ,M11 to yield 11 predictions which are integrated using late fusion to predict the final
threat level. During operational use (after training), an initial part of a live trajectory is processed
to extract features, and the combination of single predictors and late fusion produces the final
threat score.

in T to the first j timepoints. Figure 2.1 shows a drone’s trajectory τd and its restriction

tr(τd, 30) to 30 seconds.4. As an example, we may wish to predict the level of threat posed

by tr(τd, 30) after the 30 seconds of the flight. The threat score is given by y(τd) ∈ [1, 10].

The higher the threat score, the more threatening the drone’s trajectory.

The Drone Threat Prediction Problem (DTPP[lev]) is to learn a function flev :

(d, tr(τd, j))→ {0, 1}, such that f(d, tr(τd, j)) = 1 if the threat posed by τj ≥ lev, where

lev ∈ [1, 10].

DTPP can work after any observation window j > 0 after the drone flight begins.

This is critical for security. The earlier predictions are made about the threat level

of trajectories, the earlier security officials can prioritize their responses.2. Earliness of

prediction must be balanced against accuracy of prediction. Understanding this balance

is a major goal of this chapter.

4Drone locations may be acquired at irregular intervals.

44

Table 2.1. DEWS Dataset Statistics

Threat Score
Statistic [1, 3] [4, 7] [8, 10]

Number of Drones 18

Number of Trajectories 213 94 42

Avg. Duration (s) 265 298 286

Avg. Distance (m) 435.1 988.2 752.1

Avg. Altitude (m) 62.69 115.9 100.7

Avg. Speed (km/h) 7.088 14.58 10.41

2.4. DEWS Architecture

Figure 2.2 shows the DEWS architecture. DEWS uses a dataset of drone trajectories

annotated by Dutch police and municipality — Table 2.1 presents a brief overivew.

The Feature Extraction module extracts key features that characterize a drone tra-

jectory. The Threat Classification module combines the predictions of 11 classifiers to

provide a final classification.

2.4.1. Trajectory Training Data

We collected a dataset of 349 drone trajectories to train DEWS. These trajectories rep-

resent all known recorded drone flights over The Hague captured by Dutch police and

municipality over a period of eight months. The threat of each trajectory was assessed

on a 1-10 scale by at least one police official. 50 trajectories were annotated inde-

pendently by 2 or more police and municipal officers. To assess agreement

amongst the officials, we computed the inter-annotation weighted Cohen’s

kappa coefficient of 0.772, indicating substantial agreement amongst annota-

tors..

45

Police officials then categorized trajectories as low threat (score < 4), medium threat

(score ∈ [4, 8)), and high (score ≥ 8) threat.

2.4.2. Feature Extraction

This module extracts 110 features for each trajectory. Appendix A describes all the

features.

Basic features offer an initial summary of each trajectory. They include the number of

observations, duration of the flight, distance traveled, and communication channel used

(e.g. radio-frequency, Wi-Fi).

Capability features include physical attributes (e.g., weight, dimensions) and perfor-

mance specifications (e.g., maximum payload, battery capacity). These features are crit-

ical for assessing the drone’s operational limits and the potential threat it may pose.

Altitude features (e.g., the mean altitude above takeoff) and speed features (e.g., min-

imum/maximum speeds) provide insight into the dynamics of each trajectory. They are

essential for detecting suspicious activities and ensuring regulatory compliance as drones

may have altitude or speed restrictions.

No-fly Zone features capture the behavior of trajectories in terms of their respect for

the law. We used no-fly zone data5, and defined six features to quantify the proximity

of the trajectory to a no-fly zone, e.g., whether the drone entered a no-fly zone, the

percentage of time the trajectory was within a no-fly zone.

Asset-based features (e.g. dams, utilities, government buildings, defense sites) also

need to be considered when assessing the threat of a trajectory. We defined features

5https://www.godrone.nl

46

about the proximity of the trajectory to these assets (e.g. the maximum/mean asset

values overflown). Asset values were provided by Dutch police.

Observation history features capture the similarity between the current trajectory and

historical trajectories. Self-similarity features refer to the similarity between the current

trajectory and past trajectories of the same drone, which can help detect recurring flight

patterns or behaviors that may indicate potentially benign operations. Cross-similarity

features capture the similarity between the current trajectory and past trajectories of other

drones. This may be useful for identifying anomalous behavior by comparing it to known

suspicious or dangerous flight patterns exhibited by other devices. Cosine similarity is

used in both.

2.4.3. Threat Classification

The Threat Classification module predicts the threat level (low, medium, high) of a tra-

jectory based on its extracted features. To accomplish this, we trained a suite of 11

well-known machine learning classifiers, encompassing both traditional and neural net-

work models.6

For each classifier, we did hyper-parameter optimization and applied feature selection

to identify the most relevant subset of features. The feature selection process consists

of three main steps: (1) removing constant columns, (2) retaining only one feature from

pairs of features with a Pearson correlation greater than 0.95, and (3) selecting the top-

k features based on their Mutual Information (MI) scores, where k is a user-defined

6The classifiers used in DEWS are: Logistic Regression, k-Nearest Neighbors (KNN), Support Vector
Machines (SVM), Decision Trees, Random Forest, Gradient Boosting, Naive Bayes, AdaBoost, Extra
Trees, a Multi-layer Perceptron (MLP), and a wide-and-deep neural network.

47

parameter. This approach allowed us to develop specialized models that leverage distinct

subsets of features for the same trajectory, thereby enhancing model diversity within the

suite.

After individually training each model Mi, we used late fusion to combine their pre-

dictions. The final threat score for a trajectory t is computed as a weighted sum of the

probability estimates produced by each model: y(t) =
∑11

i=1 Mi(t) · wi, where Mi(t) rep-

resents the probability prediction of model Mi that trajectory t is threatening, and wi

denotes the weight assigned to model Mi. The weights wi were optimized through grid

search to identify the combination of weights that maximized overall classification perfor-

mance. This fusion process enables DEWS to integrate the strengths of multiple models,

ensuring robust and accurate threat classification.

2.5. Experiments

All experiments were conducted on a computational platform having a 10th Gen

Intel i9-10980XE processor, 256 GB of RAM, and an NVIDIA RTX A6000. The codebase

involved approximately 2000 lines of code in Python 3.10. All classification models were

implemented using the Scikit-learn library, expect for the wide and deep classifier for

which we used the Tensorflow 2 library.

2.5.1. Data Collection

Data about 349 drone trajectories over a Dutch city was systematically collected by the

Dutch police using the Senhive7 commercial drone tracking system. This system tracks

drones by monitoring their communication frequencies with drone operators, allowing
7https://senhive.com/sen-id-1

48

for the detection and recording of their trajectories within a radius of 25 km. The

Senhive system provides the device model name (e.g., DJI Mini 3 Pro) for drones detected

within its operational range. Based on this information, we derived the capability features

by referencing the manufacturer-provided specifications for each identified model. An

anonymized version of this dataset was provided by the Dutch Police to the academic

part of our team, with sensitive information such as device IDs replaced with anonymized

IDs. Summary statistics for the dataset are provided in Table 2.1.

We developed our own GUIs for annotating asset values and threat scores associated

with the drone trajectories. Each trajectory was individually assessed and annotated

based on its specific characteristics and potential threat level by 2 police officials and 2

security officials from the Hague Municipality, all with deep experience in drone threat

assessment.

2.5.2. Experimental Protocol

In our experiments, we address the DTPP problem at three distinct levels: 3, 5 and 7.

This corresponds to the scenarios detailed as follows:

(i) Low-Threat Prediction (LTP): trajectories with a threat score in the [1, 4) range

(i.e. greater than or equal to 3 and strictly less than 4) are considered low threats.

The LTP problems predicts no-threat (score less than 3) and low threat (score

greater than 3). As you can see from Table 2.1, 213 of 349 trajectories (61.03%)

in our dataset were considered to be low threat which was consistent with what

our security experts had seen in their real-world assessments.

49

(ii) Medium-Threat Prediction (MTP): trajectories with a threat score in the [4, 8)

range are considered medium threat trajectories. So MTP distinguishes between

medium threats (score of 4 or more) and other trajectories. Table 2.1 shows that

94 of 349 trajectories (26.93%) in our dataset posed a medium threat.

(iii) High-Threat Prediction (HTP): trajectories with a threat score greater than or

equal to 8 are classified as threatening. Finally, Table 2.1 shows that the other

42 trajectories (12.03%) in our dataset posed a high threat.

By applying the learned predictive models for a given trajectory, we can uniquely

classify a trajectory into one of the four threat levels (no threat, low, medium, high

threat).

These classification tasks are increasingly difficult due to the skewed distribution of

threat labels, with the HTP setting containing significantly fewer threatening trajectories

compared to MTP and LTP.

We conducted three experiments:

• Early Threat Prediction Evaluation: We assess DEWS’s capability for early threat

prediction by varying the observation window for each trajectory. Specifically,

we analyze each trajectory t using the first i seconds of a flight, where i ∈

{1, 5, 10, 20, 30, 60, 180, 360, 720}. This assesses how early accurate predictions

about the potential threat can be made.

• Ablation Study : To determine the relative importance of different feature types,

we systematically remove each feature type from the model and retrain the

DEWS[lf] late fusion predictor. Performance is then evaluated based on recall,

50

precision, and F1-scores to identify which features contribute most significantly

to predictive accuracy.

• Feature Relevance Analysis : Assuming that features selected for classification are

the most relevant for solving the task, we analyze the features chosen by each

classifier during the feature selection process. For each observation window, we

count how often each attribute is selected for classification across all classifiers

in the model suite. These counts are then normalized to compute the relative

frequency of each feature category. Specifically, let w denote an observation

window, A = {F1,F2, . . . ,Fn} represent the set of features, and M1,M2, . . . ,M11

be the classifiers in the model suite. We define:

– N
(w)
ij as the count of how often the feature Fi is selected for classifier Mj

during Mj’s features optimisation process for classification, within window

w;

– N
(w)
i as the total count of how often the feature Fi is selected across all

classifiers, i.e.

N
(w)
i =

11∑
j=1

N
(w)
ij .

To compute the relative frequency f
(w)
i of the feature Fi for the observation

window w, we normalize N
(w)
i by the total counts for all attributes:

f
(w)
i =

N
(w)
i∑n

k=1N
(w)
k

.

• Runtime: We measure DEWS’s runtime for feature extraction and classification

with late fusion in operational use (after training).

51

1 60 180 360 720
time threshold (s)

0.6

0.7

0.8

0.9

pr
ec

isi
on

1 5 10 20 30

0.6

0.7

0.8

0.9

(a)

1 60 180 360 720
time threshold (s)

0.6

0.7

0.8

re
ca

ll

1 5 10 20 30

0.6

0.7

0.8

(b)

1 60 180 360 720
time threshold (s)

0.6

0.7

0.8

f1

1 5 10 20 30

0.6

0.7

0.8

(c)

Figure 2.3. High-Threat Prediction (HTP) settings: Precision (a), Recall (b), and F1-score (c)
metrics are shown as functions of varying temporal restrictions on the trajectories. The top row
provides a zoomed-in view of the results for shorter time windows (less than 30 seconds), while
the bottom row displays the complete range of observation windows.

All experiments were conducted using time series cross-validation, i.e. we learned a

model from an early set of trajectories and then used them to predict on later sets of

trajectories.

2.5.3. Results

Early Threat Prediction Evaluation. Figure 2.3 illustrates DEWS’s performance under

the HTP setting. This setting poses the biggest challenge in our work because of

class imbalance (12.03% highly threatening, 87.97% not highly threatening) which is well-

known to be difficult to handle.

Figures 2.3a, 2.3b, and 2.3c depict precision, recall, and F1-score, respectively, for

all 11 classifiers as well as the DEWS late fusion classifier, DEWS[lf]. These metrics are

analyzed by varying the observation window. Performance comparisons under MTP and

LTP settings are reported in the Appendix A.

52

Finding 1: Late Fusion is the Best Predictor. Late fusion consistently outper-

forms the 11 classifiers across all observation windows, achieving the highest results in

terms of precision, recall, and F1-score. As shown in Figure 2.3, within an observation

window of 30 seconds, DEWS[lf] stabilizes at an F1-score of approximately 80%, with

precision exceeding 90% and recall around 75%. As the observation window increases,

performance shows an upward trend, with the most substantial improvement occurring be-

tween one minute and three minutes. The best performance is achieved at the six-minute

threshold, where precision reaches 0.967 and recall 0.869.

Finding 2: Increasing the Observation Window may Not Improve Per-

formance. Interestingly, increasing the observation window does not always lead to

improved performance. For example, Figure 2.3 shows that the highest recall of 0.789

for shorter observation windows occurs with 5 seconds of observation, when precision is

0.934 (using our DEWS[lf] classifier). Both metrics show a slight decline when the window

is extended up to 30 seconds. Moreover, beyond six minutes, performance deteriorates

across all models and metrics.

Finding 3: Precision is always higher than recall. Figure 2.3 shows that the

same time thresholds yield higher performance in terms of precision compared to recall.

For instance, with a short observation window of 5 seconds, precision reaches 0.934, while

recall is comparatively lower at 0.789. This trend is consistently observed across all

observation windows. This is due to the imbalance of the data considered for the HTP

problem which causes DEWS to be more conservative when predicting the the highly

threatening (minority) class. This suggests that DEWS is very accurate at detecting

highly threatening trajectories with a very low false positive rate.

53

1 60 180 360 720
time threshold (s)

0.60

0.65

0.70

0.75

0.80

0.85

f1

1 5 10 20 30
0.60

0.65

0.70

0.75

(a)

1 60 180 360 720
time threshold (s)

0.6

0.7

0.8

0.9

f1

1 5 10 20 30

0.60

0.65

0.70

0.75

0.80

(b)

1 60 180 360 720
time threshold (s)

0.60

0.65

0.70

0.75

0.80

0.85

f1

1 5 10 20 30
0.60

0.65

0.70

0.75

0.80

(c)

Figure 2.4. Ablation Study: F1-score under LTP (a), MTP (b) and HTP (c) settings when
removing one feature category. The dashed line represents the scenario with all features.

This is extremely valuable for police for two critical reasons: First, it enhances trust

in the system, as the low false positive rate minimizes the likelihood of unnecessary inter-

ventions. Second, in resource-constrained environments, human assessment of predicted

high threat can be costly and inefficient. High precision ensures that humans don’t get

frustrated with false positives.

Ablation Study. Figures 2.4a, 2.4b and 2.4c show the F1-scores obtained when remov-

ing individual feature categories under the LTP, MTP, and HTP settings, respectively.

Finding 4: Asset-related features are the most critical for threat prediction.

We see from Figure 2.4 that with a 5-second observation window, the F1-score with all

features included is 0.723 in the HTP setting, but decreases to 0.586 when asset features

are excluded, representing a 19% reduction in performance.

Equally surprising are the features that proved to be less important than we had

expected. For example, we initially hypothesized that no-fly zone features would play

a significant role in threat prediction, yet they had a relatively minor impact on the

model’s performance. Similarly, we expected the type of drone (e.g., fast drones with

54

1 60 180 360 720
Time threshold (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
le

va
nc

e

1 3 5 10 20 30
0.0

0.2

0.4

Altitude
Assets

Basic
Capabilities

Cross-similarity
No-fly zones

Self-similarity
Speed profile

Figure 2.5. Feature Relevance Analysis (HTP problem): relative frequency of feature categories
selected by classifiers across different temporal restriction windows.

large payloads) to be a key predictor, but their importance for prediction was small.

Additionally, speed-related features, which we assumed would be important, turned out

to have limited significance in our experiments.

Overall, these findings support our preliminary hypothesis that the geographical re-

gion, represented by asset-related features, is a key determinant in assessing the threat

level of a trajectory, independent of the drone’s intrinsic characteristics or the specific

properties of the trajectory itself.

Feature Relevance Analysis. The results in Figure 2.5 (HTP problem) indicate that

as the observation window increases, the importance of asset-related features becomes

more pronounced. For instance, after a 180 second observation window, over 60% of the

features used for classification belong to the asset category. Interestingly, within the first

1-5 seconds of observation, capability-related features show relatively high importance.

The importance of these features decreases sharply with longer observation windows.

This may be due to the limited information available in short observation windows, where

the drone’s capabilities alone serve as a strong indicator of potential threat.

55

160 180 360 720
Time Threshold (s)

2.90

2.95

3.00

3.05

Ru
nt

im
e

(s
)

Feature Extraction

160 180 360 720
Time Threshold (s)

0.135

0.140

0.145

0.150

0.155

0.160

0.165

Ru
nt

im
e

(s
)

Prediction

Figure 2.6. Runtime Analysis (HTP problem): Time (in seconds) for feature extraction (left)
and prediction using late fusion (right).

Runtime. Figure 2.6 shows the mean DEWS runtime for feature extraction and predic-

tion (with late fusion) under the HTP setting in operational use. The feature extraction

time shows a slight increase with a larger observation window, reflecting the additional

computational load due to the increased number of trajectory points. In contrast, the pre-

diction time is not affected by the length of the trajectory. With an overall classification

time of approximately 3 seconds, the DEWS system demonstrates its potential for real-

time predictions, enabling trajectory classification after just 3-5 seconds of observation.

This highlights the system’s suitability for applications requiring prompt decision-making.

2.6. Limitations and Future Work

Like all studies, our study can be improved in many ways. First, we note that we

looked at all trajectories over a city that Dutch police tracked over an 8-month period.

Drone tracking technology (e.g. radar or acoustic sensors) that differs from the methods

used by Senhive (which monitor drone communications frequences - but further details

are proprietary to the company and we don’t have access to it) may enable tracking flights

that Senhive doesn’t track. DEWS’ predictive accuracy and operational effectiveness when

56

a different tracking method is used remains to be studied. That said, our results show that

the single biggest factor in assessing drone threat is the assets in the city which doesn’t

change based on the drone. Second, our dataset includes trajectories from a single city in

the Netherlands, posing challenges to generalization across diverse operational scenarios

(e.g., warzones). For instance, detecting threatening vs. non-threatening drones in a

battlespace (e.g. Ukraine) may differ. Yet, DEWS has been tested with three different

distributions (LTP, MTP, HTP), so there is hope that the same principles apply - however,

we do not have labeled information about drone trajectories in warzones. Third, once

adversaries know about DEWS, they may take evasive actions to prevent their intentions

being predicted. This is partly mitigated by our finding that asset value is the important

feature in assessing threat - and adversaries cannot manipulate that. But the development

of ML models that are more robust to an adversary’s evasion attempts need to be studied

as a next step. Fourth, two or more trajectories that individually seem non-threatening

might collude to pose a significantly higher threat. This needs to be studied. Finally,

DEWS is designed for use by public authorities only. While misuse (e.g. privacy violations)

are possible, other excellent efforts such as (123; 122) can be combined with DEWS to

mitigate such risks, e.g., by utilizing features that do not include information capable of

identifying drones or revealing their start/end coordinates.

2.7. Conclusion

To the best of our knowledge, this is the first work to explicitly study the problem of

how threatening a drone flight is to a city or geographic region. We propose a repertoire of

features for quantifying the threat of a drone flight, build out the first drone threat dataset

57

that was assessed by police and security officials and will be made publicly available (with

some anonymization to ensure security), and build the first predictive models to assess the

threat level posed by a trajectory. We are also the first to show that we can predict threat

levels early, when a trajectory is just underway. With just 30 seconds of trajectory data,

DEWS is able to make predictions of high threat levels with an F1-score over 0.8. And

these predictions take only a few seconds to make. Predictive accuracy goes up till about

5-6 minutes of the trajectory is observed. This enables DEWS to continuously provide

forecasts to security officials after 30 seconds of the flight is observed and they can decide

on their response depending on their own judgement and knowledge of context. DEWS

also allows predictions to be tailored to a specific context and threat assessment. In other

words, given a specific threat assessment, particular assets (on the ground) or capabilities

(of drones) may be valued differently — and DEWS will still work.

Our biggest new finding is that the key determinant of the danger posed by a trajectory

is not the trajectory itself, but the values of the assets on the ground that a trajectory

flies over.

58

CHAPTER 3

STATE: Safe and Threatening Adversarial Trajectory Engine

Chapter 2 demonstrated that accurate early threat prediction requires comprehen-

sive training data spanning benign and threatening trajectories. However, operational

drone monitoring infrastructure captures limited threatening flight examples, and privacy

regulations may constrain data sharing across jurisdictions. To address the problem, we

present STATE, a novel GAN-based framework to automatically generate a set of safe and

threatening drone trajectories over a region. Using STATE, security officials can generate

synthetic trajectories for regions over which no such trajectories were previously recorded,

enabling them to better test planned defenses. Jointly with security officials from The

Hague, we show that STATE beats five baselines, achieving up to 75.8% improvement in

trajectory plausibility and 35.8% improvement in threat alignment, as evaluated by police

experts.

3.1. Introduction

Cities are likely to have an increasingly complex airspace in coming years as the

use of drones for product delivery, medical purposes, real-estate and insurance surveys,

entertainment, urban sensing, and more, expand (101). This complex airspace will provide

new threat vectors for terrorists and rogue nation states (96).

The recent DEWS (34) system looks at drone flights in real-time and predicts whether

the flight will be safe or threatening after 30 seconds of observation of the flight. While this

59

(a) (b) (c)

Figure 3.1. Three examples of threatening trajectories generated with STATE. (a) Trajectory
around Park Sorghvliet and surrounding districts, terminating within a no-fly zone. (b) Tra-
jectory traversing a sensitive zone with multiple government buildings, also terminating in a
no-fly zone. (c) Trajectory beginning in a residential neighborhood and performing perimeter
surveillance around a sensitive institutional complex without entering no-fly zones.

is useful, DEWS was trained on 8 months of drone flight data from The Hague, Nether-

lands. However, many cities do not currently have drone tracking mechanisms in place.

We leverage the DEWS dataset and collaborate with two law enforcement experts who

assess drone threats daily to design STATE (Safe and Threatening Adversarial Trajectory

Encoder), to automatically generate a set of safe and threatening drone trajectories over

any geographical region. As long as someone with security knowledge of a geographical

area can annotate the value of its assets on the ground (e.g., The Blue House in Seoul),

STATE can automatically generate a set of trajectories, both safe and threatening, that

are consistent with drone flight distributions that the DEWS (34) team observed over

The Hague. Figure 3.1 shows three examples of threatening trajectories over The Hague

generated with STATE. Using STATE, systems like DEWS can be trained to provide

early warning threat assessments posed by drone trajectories to other regions (not just

The Hague), enhancing public safety.

This chapter makes four contributions. First, we formally define the Threat-Conditioned

Trajectory Generation task to synthesize drone trajectories conditioned on a specified

60

threat class within a given geographical area. Second, we develop the novel STATE frame-

work for Threat-Conditioned Trajectory Generation. STATE uses a conditional Genera-

tive Adversarial Network (cGAN) architecture to generate spatially realistic trajectories

that are aligned with a target threat class. A central innovation is the use of a pre-trained

threat classifier, which serves as an auxiliary supervision signal to enforce threat consis-

tency during generation. Third, we curate and release a new dataset of 200 synthetic

drone trajectories over The Hague. Each trajectory is manually annotated by two law

enforcement experts based in The Hague with corresponding threat level labels, providing

a valuable resource for future research on security-aware trajectory modeling1. Fourth,

our extensive experiments assess STATE against five baselines in terms of spatial plau-

sibility, trajectory diversity, and semantic threat alignment of the generated trajectories.

Our results show that STATE consistently outperforms all baselines, achieving relative

improvements of up to 75.8% in spatial plausibility and 35.8% in threat classification

consistency, as judged by police experts.

3.2. Related Work

Trajectory forecasting has looked at predicting future positions of Unmanned Aerial

Vehicles (UAVs) or drones based on partial historical data (73). More recent efforts

generate complete, synthetic, yet realistic flight paths from scratch (114).

Most works treat trajectory generation as a sequence modeling problem, where loca-

tions are generated sequentially, conditioned on a predefined start token/position. Markov

models were used to capture local sequential dependencies in movement patterns (51).

1To promote reproducibility, we release the code repository and dataset: https://github.com/nsail-
lab/STATE-Codebase

https://github.com/nsail-lab/STATE-Codebase
https://github.com/nsail-lab/STATE-Codebase

61

However, such models are unable to represent long-range temporal dependencies, which

are essential to accurately reflect the dynamics of real-world UAV trajectories. To over-

come these limitations, Long Short-Term Memory (LSTM) networks, have been widely

adopted for autoregressive trajectory generation (113). These models capture long-term

temporal dependencies and incorporate rich contextual features such as spatial coordi-

nates, altitude, and time (135). Recently, Conditional Generative Adversarial Networks

(cGANs) (134) have emerged as a promising framework to create trajectory data through

adversarial training. In addition to preserving temporal coherence, these models sup-

port explicit conditioning on external variables. (62) generates trajectories aligned with

predefined speed profiles, while (93) incorporates weather conditions into the generative

process. (8) has also integrated device-specific requirements into the generative process,

e.g., minimizing energy consumption, avoiding collisions.

An alternative line of research explores the generation of trajectories as images that

preserve spatial structure. Trajectories are first synthesized as an image over a specific

area and later converted into sequential data points. (9) generated trajectory images

under a smoothness constraint and then used an LSTM to recover the ordered sequence of

waypoints. (139) introduced a UAV 2D trajectory forecasting framework that leverages an

attention-based aggregation module to capture short-term spatio-temporal dependencies

among trajectory points.

To date, we are not aware of any UAV trajectory generation method that considers the

potential security threats posed by UAV flight paths. To the best of our knowledge, the

only work addressing security aspects in this context is presented in (34), which frames the

problem as a classification task, distinguishing between safe and threatening pre-existing

62

trajectories. They do not, however, generate either safe or threatening trajectories which

is the goal of this chapter.

3.3. Problem Formulation

A trajectory τ is defined as an ordered sequence of Mτ waypoints:

τ =
{
wj =

(
latj, longj, hj

)
| j = 1, 2, . . . ,Mτ

}
,

where each waypoint wj consists of a latitude latj, a longitude longj, and an altitude hj.

Let D = {(τi, θi)}Ni=1 denote a “training” dataset comprising N drone trajectories

recorded within a given region C. Each trajectory τi is annotated with a binary threat

label θi ∈ {0, 1}, denotes a safe (resp. threatening) trajectory when θi = 0 (resp. θi = 1).

A planar projection, τ̂ ∈ {0, 1}H×W , of trajectory τ , over a 2-dimensional grid of size

H × W ensures that each non-zero element in τ̂ indicates the presence of at least one

waypoint of τ projected onto the corresponding cell.

The Threat-Conditioned Trajectory Generation problem seeks to learn a generative

model G capable of synthesizing drone trajectories that are conditioned on a target ge-

ographical area for both A ⊆ C or A ∩ C = ∅ scenarios, and a specified threat label θ̂.

Specifically, we want to learn a function of the form: G : (A, θ̂, z)→ τ, where z is a latent

variable. The area A may correspond to any geographical region and is not limited to

the areas flown by trajectories in D. The goal is for G to generate drone trajectories over

any region, while preserving threat-conditioned behaviors observed in D. This capability

is critical for building security warning systems in regions lacking comprehensive drone

traffic data.

63

3.4. Methodology

STATE has 3 modules. The Data Representation Module extracts relevant information

FA about the target geographical area A (e.g., no-fly zones, population density). The

Potential Waypoint Set Generator uses a GAN-based approach to generate the planar

projection of a synthetically generated trajectory τ̂ , conditioned on the information FA

extracted above, the target threat class θ̂, and a latent noise vector z (cf. Figure 3.2).

STATE’s key innovation is the integration of a pre-trained threat classifier that provides

an auxiliary loss, ensuring that the generated planar trajectory τ̂ aligns with the threat

class θ̂. Finally, the Trajectory Reconstruction Module arranges the trajectory’s planar

projection τ̂ into a sequential trajectory τ and assigns altitude values to each waypoint.

We describe these modules in detail below.

3.4.1. Data Representation Module

This module encodes the target area A into a multi-channel feature tensor FA ∈ RH×W×L,

where H and W denote the spatial dimensions of the area, and L is the number of feature

channels. Figure 3.2 shows the extracted tensor for part of The Hague. Channels include:

No-Fly Zone Map FNFZ
A ∈ {0, 1}H×W : A binary image indicating the presence (1) or

absence (0) of restricted airspace (e.g., airports, military bases).2.

Population Density Map F PD
A ∈ RH×W : A heatmap showing population density in differ-

ent regions obtained in high-resolution from the Humanitarian Data Exchange3.

Satellite Imagery F SI
A ∈ RH×W×3: High-resolution RGB image from OpenStreetMap4.

2This information is usually publicly available. For The Hague region, we collected 85 no-fly zones from
https://map.godrone.nl
3https://data.humdata.org
4https://www.openstreetmap.org

https://map.godrone.nl
https://data.humdata.org
https://www.openstreetmap.org

64

Data Representation
Module

Potential Waypoint
Set Generator

Figure 3.2. STATE’s Architecture: The Data Representation Module represents the target
geographical region A via a multi-channel feature tensor, including the No-Fly Zone Map FNFZ

A ,
the Population Density Map FPD

A , the Satellite Imagery FSI
A , the Street Map FST

A , and the Asset
Value Map FAV

A . Then, the Potential Waypoint Set Generator takes geographic features FA,
the target threat class θ̂, and a noise vector z as input. It outputs a planar trajectory τ̂ that
is evaluated by the Trajectory Validity Discriminator MV network which distinguishes real
from synthetic trajectories, and the Threat Alignment Network MT that ensures consistency
with the intended threat class. In this case, we are conditioning the generation process on the
threatening class, i.e., θ̂ = 1.

Street Map F ST
A ∈ RH×W×3: A high-resolution RGB image of road networks and urban

infrastructure from OpenStreetMap.

Asset Value Map FAV
A ∈ RH×W : A heatmap (1-10 scale) quantifying the importance of

parts of the target area. These values are annotated by local security experts and have

been identified as a primary factor influencing threat perception (34). Two police officers

from The Hague annotated relevant city areas.

Figure 3.2 shows an example of the feature maps extracted from the Park Sorghvliet

region of The Hague and its adjacent districts. The No-Fly Zone Map FNFZ
A shows that

about half of this area (red region in Figure 3.2) is an NFZ. The Population Density Map

F PD
A shows high density in the city center, but low density in the park. The Asset Value

65

Map FAV
A shows that security experts assigned a high threat level to the park, suggesting

its relevance for security planning.

The complete representation FA of the target area is formed by concatenating all

channels along the depth dimension: FA =
[
FNFZ
A ⊕ F PD

A ⊕ F SI
A ⊕ F ST

A ⊕ FAV
A

]
, FA ∈

RH×W×9, where ⊕ denotes channel-wise concatenation. All channels are spatially aligned

such that each pixel location corresponds to the same geographic coordinate in A. For

notational simplicity, we will refer to FA as F henceforth.

3.4.2. Potential Waypoint Set Generator

This module generates the planar projection τ̂ of a trajectory τ , i.e., the unordered set

of waypoints over the target geographical area A. It has three main components: the

Waypoint Generator network G, the Trajectory Validity Discriminator DV , and the Threat

Alignment classifier DT .

The Waypoint Generator uses an encoder-decoder architecture to synthesize τ̂ from

the target geographic area features F , the target threat class θ̂, and a noise vector z.

Formally, it computes the function:

G : (F, θ̂, z)→ τ̂ ∈ {0, 1}H×W ,

where z ∈ Rd is a latent d-dimensional vector sampled from a normal distribution, i.e.,

z ∼ N (0, Id). It uses a CLIP-based encoder (98) to extract relevant spatial features from

the target geographic area. The encoder transforms the multi-channel tensor F ∈ RH×W×9

into a latent h-dimensional feature embedding XF ∈ Rh. Concurrently, a feed-forward

66

neural network encodes the target threat class θ̂ into a k-dimensional latent vector Xθ̂ ∈

Rk.

The target area’s features XF , the encoded threat class Xθ̂, and the latent noise vector

z are concatenated to form a unified input vector X ′ =
[
XF ⊕Xθ̂ ⊕ z

]
∈ Rh+k+d.

A decoder network then processes X ′ to generate the trajectory’s planar projection

τ̂ ∈ {0, 1}H×W , i.e. the decoder outputs an unordered set of waypoints which the synthetic

trajectory might fly over.

Figure 3.2 provides a visual illustration of a generated waypoint set τ̂ over Park

Sorghvliet in The Hague, corresponding to the geographical setting described in Sec-

tion 3.4.1. The generation is conditioned on the presence of threat, i.e., θ̂ = 1. For

visualization purposes, the trajectory’s planar projection τ̂ is overlaid (in red) on the cor-

responding street map. We note that the generator primarily selects waypoints in densely

populated areas surrounding parks not covered by no-fly restrictions which is realistic.

A smaller number of waypoints are also located within the park boundaries, which had

been previously annotated as a high-value asset by police officers. This selection reflects

the influence of the threat label on the generation process, guiding the model toward a

trajectory that may pose threat from a security perspective.

The Trajectory Validity Discriminator MV is a binary classifier which assesses

whether τ̂ is real (i.e., sampled from dataset D) or synthetic (i.e., generated by G). It is

trained jointly with the generator and is conditioned on the same inputs. Formally, it is

defined as:

MV : (τ̂ , F, θ)→ pVτ̂ ∈ [0, 1],

67

where pVτ̂ represents the probability that τ̂ is a real trajectory. A higher value of pVτ̂

indicates thatMV has greater confidence in the authenticity of τ̂ .

The Threat Alignment NetworkMT is a pre-trained binary classifier that estimates

the probability of the target threat class θ̂ for a given planar trajectory τ̂ . Formally, it is

defined as:

MT : (τ̂ , F)→ pTτ̂ = P (θ̂|τ̂ , F) ∈ [0, 1],

Incorporating F is critical in assessing whether a trajectory is threatening or not be-

cause past work (34) has shown that locations of high-value assets on the ground play a

critical role in determining if a trajectory is threatening or not. Note that MT is pre-

trained on real trajectories from D and remains fixed during adversarial training of the

Waypoint Generator and Trajectory Validity Discriminator. Section 3.5.1.2 provides full

implementation details on G,MV andMT .

3.4.2.1. Adversarial Training. The Waypoint Generator G and the Trajectory Validity

Discriminator MV are adversarially trained in a manner consistent with Conditional

Generative Adversarial Networks (cGANs)(84). Specifically, the Waypoint Generator G

is trained to synthesize planar trajectories τ̂ over F that not only resemble real-world

planar trajectories but also align with the target threat class θ̂. Its loss function consists

of two components:

Trajectory Validity Loss ensures that the generated trajectory τ̂ is realistic through feed-

back from the discriminatorMV . The relative loss term is as follows:

LV
G = Ez

[
− log pVτ̂

]
= Ez

[
− logMV

(
G(F, θ̂, z), θ̂, F

)]

68

Threat Alignment Loss encourages G to generate planar trajectories that are aligned with

the target threat class θ̂. It incorporates the prediction pTτ̂ of the Threat Alignment

Network MT as follows:

LT
G = Ez

[
− log pTτ̂

]
= Ez

[
− logP (MT (G(F , θ̂, z)) = θ̂)

]

The Waypoint Generator ’s combined loss function is a linear combination of these

terms: LG = λV · LV
G + λT · LT

G , where λV and λT are scalar weights that control the

relative importance of trajectory realism and threat alignment, respectively.

In the example in Figure 3.2, training G with a large λT value may lead to a generator

that places a disproportionate number of waypoints within the no-fly zone (e.g., in Park

Sorghvliet). While this may be consistent with the desired threat label θ̂, it conflicts

with operational constraints and typical flight patterns, as real trajectories — regardless

of threat intent - are unlikely to traverse extensively or exclusively through restricted

airspace.

The Trajectory Validity Discriminator MV is trained jointly with G to separate real

planar trajectories η sampled from D and synthetic planar trajectories τ̂ generated by G.

Its loss is as follows:

LMV = Eη∼D

[
− logMV (η, θ̂, F)

]
+

Ez

[
− log

(
1−MV

(
τ̂ , θ̂, F

))]
.

Note that this loss does not incorporate feedback from the Threat Alignment Network

as DV is solely used to assess the realism of the generated planar trajectories without

explicitly enforcing alignment with a particular threat class.

69

3.4.3. Trajectory Reconstruction Module

This module synthesizes a complete trajectory τ from its planar projection τ̂ . This process

includes (i) reconstructing a temporally ordered sequence of waypoints from τ̂ , and (ii)

assigning altitude values to τ ’s waypoints. This post-processing step is independent of

the training phase of the Potential Waypoint Set Generator.

3.4.3.1. Temporal Sequencing. This process reconstructs a temporal trajectory τ

from the planar projection τ̂ ∈ {0, 1}H×W , as illustrated in Figure 3.3. It starts by

identifying the contour Ω of the largest connected component of waypoints in τ̂ , denoted

Ω = {w1, w2, . . . , wl}. For example, this region represents the most extensive region of

adjacent “red" pixels in τ̂ in Figure 3.3.

All waypoint pairs (ws, we) from this set are considered: ws, we ∈ Ω ∧ d(ws, we) < ξ

where d is Manhattan distance, and ξ is an empirically optimized threshold that governs

the spatial proximity required for candidate trajectory formation. For each pair (ws, we), a

candidate trajectory π = {ws, w2, w3, . . . , we} is constructed through a stochastic random

walk connecting ws to we
5.

The complete set of candidate trajectories, denoted Π = {π1, π2, . . . , πL}, where L =(
l
2

)
is the number of waypoint pairs. Figure 3.3 illustrates some candidates generated

from the same planar projection over the World Forum convention center in The Hague.

Although all candidates traverse the same region (Park Sorghvliet and its surrounding

districts), they may vary significantly in spatial layout and flight dynamics. For this

reason, each trajectory in Π is evaluated by the Threat Alignment Network MT (cf.

5The existence of such a random walk is guaranteed, as both ws and we belong to the same connected
component.

70

Contour Detection Random Walk
Generator

Figure 3.3. Temporal Sequencing: This module reconstructs a temporally ordered trajectory
τ from the binary planar projection τ̂ . It begins by identifying the contour Ω of the largest
connected component in τ̂ . All waypoint pairs (ws, we) along the contour are used to generate
candidate trajectories via stochastic random walks, such that ws and we are the starting point
(in purple) and ending point (in red) of the trajectory. Each candidate trajectory π ∈ Π is then
evaluated using the Threat Alignment NetworkMT to identify the trajectory most aligned with
the target threat class θ̂.

Section 3.4.2) to ensure alignment with the target threat class θ̂. The final trajectory

selected is the one that maximizes the probability of the target threat class θ̂:

τ = argmax
π∈Π

P (θ̂|π̂, F) = argmax
π∈Π
MT (π̂, F),

where MT (π̂, F) represents the probability of π belonging to the target threat class θ̂,

conditioned on the geographical area’s features F .

3.4.3.2. Altitude Profiling. determines the altitude of each waypoint wi in the gen-

erated trajectory τ . Let Dθ̂ = {τ (1)
θ̂

, τ
(2)

θ̂
, · · · , τ (B)

θ̂
|τ (i)

θ̂
∈ D} be the subset of B real

trajectories with the target threat label θ̂. We estimate the altitude distribution N j

θ̂
of

the j-th waypoint of all trajectories in Dθ̂. Subsequently, the altitude of the j-th waypoint

of the generated trajectory τ is sampled from the corresponding altitude distribution N j

θ̂
.

71

3.5. Experiments

3.5.1. Experimental Settings

3.5.1.1. Dataset. We use an 8 month dataset of 349 real drone trajectories over The

Hague, collected by the Dutch police using the Senhive6 drone tracking platform (34).

This system detects drones within a 25 km radius by intercepting communication signals

(e.g., radio frequencies) and logs their flight coordinates (latitude, longitude, altitude) at

sub-second intervals.

Three police officers annotated the threat score of each trajectory on a 1–10 scale,

with an inter-annotator agreement of 0.416 (using Cohen’s κ). Following past work (34),

trajectories with scores ≥ 7 are considered Threatening — others are Safe.

Table 3.1 reports summary statistics of the drone trajectory dataset released by the

DEWS team (34). The dataset includes information on average flight duration, covered

distance, altitude, and speed. The dataset comprises a total of 349 trajectories collected

from 18 distinct drones operating within the urban area of The Hague. Out of the 349

trajectories, 42 (approximately 12%) were labeled as threatening, while the remaining 307

(88%) were marked as safe.

Additionally, three Dutch police officers annotated the importance of 92 parts of The

Hague on a 1-100 scale, which we use to build the Asset Value Map. Figure 3.4 shows

the distribution of these annotations. Notably, 33 out of 92 regions (35%) were assigned

a value greater than 80, indicating a substantial concentration of high-importance assets

across the city.

6https://www.senhive.com

https://www.senhive.com

72

Attribute Threat Label
θ = 0 θ = 1

No. Drones 18

Duration (s) 400.0 (202.4) 466.1 (203.5)
Distance (m) 881.5 (1772.0) 1628.9 (1443.3)
Altitude (m) 73.7 (59.1) 112.4 (69.3)

Speed (km/h) 8.36 (7.79) 14.1 (11.3)
No. Trajectories 307 42

Table 3.1. Summary of drone trajec-
tory attributes for Safe (θ = 0) and
Threatening (θ = 1) trajectories. Each
entry reports the mean and standard
deviation (in parentheses).

0 20 40 60 80 100
Asset Value

0
3
6
9

12
15
18
21

No
. A

ss
et

s (
N

=
92

)

Figure 3.4. Distribution of val-
ues for the 92 assets annotated
by three police officers.

3.5.1.2. Implementation Details. All experiments were conducted on a system with

a 10th Gen Intel i9-10980XE processor, 256 GB of RAM, and an NVIDIA RTX A6000

with 48 GB memory. We used Python 3.10 and PyTorch 1.8 for our implementation.

Data Pre-Processing. For each trajectory τ ∈ D, we extract the corresponding bound-

ing region from OpenStreetMap7, applying a 200-meter padding around the flight path to

ensure contextual information is preserved. We empirically determine that a resolution

of 128 × 128 pixels offers a suitable trade-off between spatial detail and computational

efficiency. Notably, increasing the resolution introduces a higher level of detail but also

raises the complexity for the generator G to synthesize larger planar trajectories.

Waypoint Generator G. We encode the target area’s features via a pre-trained CLIP-

based encoder (98) to project FC into a latent representation XF ∈ Rh, where h = 768.

The target threat label θ̂ is transformed into a latent vector Xθ̂ ∈ Rk, with k = 8192,

using a fully-connected layer with ReLU activation. The size of the noise vector is set to

d = 100. The combination of these vectors X ′ ∈ R768+8192+100 is projected into a vector

7https://www.openstreetmap.org

https://www.openstreetmap.org

73

of size 8192 with one fully-connected layer with ReLU activation. The decoder processes

this representation with five transposed convolution layers to generate the final planar

trajectory τ̂ ∈ {0, 1}128×128.

Trajectory Validity DiscriminatorMV . This model is conditioned on the same inputs

as the Waypoint Generator and outputs a binary classification decision. Its architecture

has five convolution layers with LeakyReLU activation, followed by a sigmoid activation to

produce the final classification probability. To enhance training stability and convergence

speed, we use batch normalization between layers.

Adversarial Training. In each training iteration of STATE ’s cGAN framework, we

alternately update the discriminator MV and the generator G. The system is trained

for 1000 epochs using a batch size of 64, using the Adam optimizer with a learning rate

of ηG = ηDV
= 10−4. The loss function of the Waypoint Generator is weighted using

hyperparameters λV = 0.6 and λT = 0.4 to balance the objectives of trajectory realism

and threat alignment.

Threat Alignment NetworkMT . The architecture of this component includes a CLIP-

based encoder to embed the target area F and τ̂ , followed by two fully-connected layers

with ReLU activation function. MT is pre-trained on real trajectories (34) and remains

fixed during the adversarial training of the Waypoint Generator.

3.5.1.3. Metrics. We evaluate the quality of our framework by comparing synthetic

trajectories with real ones. For each real trajectory (τ, θ) ∈ D, we generate a correspond-

ing synthetic trajectory τ̃ over the same geographical area Fτ and with the same threat

label θ. Let P̂ = {τ̂1, τ̂2, . . . , τ̂N} be the set of planar projections of real trajectories,

74

and let Q̂ = {ˆ̃τ1, ˆ̃τ2, . . . , ˆ̃τN} be the set of planar projections of the corresponding syn-

thetic trajectories. We assess the quality of the generated trajectories using the following

metrics:

Distribution-Level Metrics. We analyze the statistical similarity between real and

synthetic trajectories by comparing two distributions:

• Trajectory Length Distribution: We compare the empirical distributions of tra-

jectory lengths, denoted as LP̂ (real) and LQ̂ (synthetic). Here, the trajectory

length is defined as the number of waypoints that belong to the planar trajectory.

• Asset-Visit Distribution: We analyze the probability distribution of visits to

assets of a given value v, denoted VP̂ (real) and VQ̂ (synthetic). This probability

looks at all trajectories and divides the number of waypoints that visit assets

with value v, by the total number of waypoints.

To quantify the differences between these distributions, we use the Jensen-

Shannon Divergence (JSD):

JSD-TL = DJS(LP̂ ∥ LQ̂),

JSD-AV = DJS(VP̂ ∥ VQ̂),

where DJS represents the Jensen-Shannon divergence (82).

Trajectory-Specific Metrics. We analyse spatial differences between real and synthetic

trajectories with two metrics:

• Pixel-wise difference. We measure the pixel-wise difference MDE between the

planar projection of a real trajectory τ̂ ∈ P̂ and its corresponding synthetic

75

trajectory ˆ̃τ ∈ Q̂:

MDE(τ̂ , ˆ̃τ) =
1

HW

H∑
i=1

W∑
j=1

|τ̂ij − ˆ̃τij|,

where τ̂ij and ˆ̃τij are the pixel values of the real and synthetic planar projections,

respectively. This metric provides a localized comparison of trajectory accuracy.

• Structural Similarity. To assess the diversity of trajectories in a given set (either

P̂ or Q̂), we measure the well-known Structural Similarity Index (SSIM) (129)

among planar projections. A lower SSIM value indicates greater diversity, ensur-

ing that the generated trajectories do not collapse into a limited set of similar

patterns.

Given two planar projections τ̂i, τ̂j ∈ P̂ , their SSIM score (130) is defined as:

SSIM(τ̂i, τ̂j) =
(2µτiµτj + C1)(2στiτj + C2)

(µ2
τi
+ µ2

τj
+ C1)(σ2

τi
+ σ2

τj
+ C2)

where µτi and στi denote the mean and variance of trajectory τi, στiτj represents

their covariance, and C1, C2 are small constants to prevent division instability.

The average structural similarity across all trajectory pairs τ̂i, τ̂j ∈ P̂ is then

given by:

SSIMP̂ =
1(
N
2

) ∑
i<j

SSIM(τ̂i, τ̂j),

where
(
N
2

)
is the number of unique trajectory pairs. We determine SSIMQ̂ by

applying the same definition to the set of synthetic trajectories Q̂.

76

3.5.2. Experimental Protocol

We designed four experiments to assess the quality and generalization abilities of STATE 8:

• Comparison with Baselines. We evaluated STATE against two random baselines,

i.e., Random Walk and Monte Carlo Sampling, and four recent trajectory gener-

ation approaches, i.e., LSTM (113), VAE (58), Traj-GAN (102), and Diffusion-

Synthesis (140). For each real trajectory in the dataset, we generate a synthetic

counterpart using both STATE and each baseline model, ensuring that gener-

ation occurs over the same geographical region and is conditioned on the same

threat class. We then compute JSD-TL, JSD-AV, MDE, and SSIM , between

real and synthetic trajectories. This experiment assesses the spatial fidelity of the

generated trajectories with respect to real-world movement patterns, controlling

for both spatial context and threat conditioning.

• Ablation Study. We evaluated the contribution of each module of STATE, namely,

the Threat Alignment Network MT , the target geographical area A, and the

encoder to extract spatial features XF .

• Adversarial Training. We analyze the training dynamics of STATE to validate

that the generator G successfully learns to produce realistic and threat-aligned

trajectories. We track the Jensen-Shannon Divergence between generated and

real trajectory distributions across training epochs for both asset visitation fre-

quency and trajectory length. Additionally, we examine the evolution of latent

8All hypotheses tested in this chapter report Bonferroni-corrected p-values, obtained with Mann-Whitney
U-test (80), to adjust for multiple hypothesis testing.

77

embeddings produced by the Trajectory Validity Discriminator MV at the begin-

ning and end of training. This experiment empirically proves that the adversarial

training process successfully aligns the generated distribution with real trajectory

patterns.

• Generalization to Unseen Regions. We assess STATE ’s ability to learn from tra-

jectories on one region and generate trajectories for a different region. As we

only knew police officials from The Hague, we partitioned the city into multi-

ple sub-regions, treating each as a functionally independent area (analogous to

distinct regions). STATE was trained on sub-regions that contained real trajec-

tories, and then evaluated on the remaining sub-regions that had no recorded

flights and are disjoint from the training data. This mirrors our use case for

STATE : synthesizing plausible drone trajectories for regions where no flight data

is available.

3.5.3. Comparison with Baselines

3.5.3.1. Baselines’ Configuration. We evaluated STATE against six baselines config-

ured as follows:

Random Walk : Given the target geographic region FA, we generate a synthetic trajec-

tory by randomly sampling an initial waypoint from τ̂ ∈ {0, 1}H×W and then iteratively

sampling adjacent pixels the next waypoints.

Monte Carlo Sampling : This method estimates the distributions ϕθ=0 and ϕθ=1 of

heading angles corresponding to both safe and threatening trajectories, respectively. The

trajectory is initialized at a uniformly sampled waypoint within τ̂ ∈ {0, 1}H×W . But

78

subsequent waypoints are generated as follows: given the target threat label θ̂, the heading

direction is sampled from the ϕθ̂ distribution, while step length is drawn from a normal

distribution, i.e., step ∼ N (1, 0.2). This strategy conditions the trajectory evolution on

the assigned threat class, introducing statistical regularities observed in real-world data

while maintaining elements of stochasticity.

Long Short-Term Memory (LSTM): We adapt the flight trajectory generation ap-

proach proposed in (113) by training a LSTM-based model that predicts the next way-

point, given the trajectory history. For a given starting waypoint of a real trajectory,

the model is trained to iteratively predict the next adjacent waypoint of the trajectory’s

planar projection, until a special end token is generated. A standard cross-entropy loss

function is used to supervise the next-location predictions during training. At inference

time, we provide the trained LSTM model with a randomly selected initial location within

the target geographical area F . The model then iteratively predicts the next waypoint

by selecting the most probable outcome at each step until the end token is generated.

Variational Autoencoder (VAE): We adapt the trajectory generation framework intro-

duced in (58) by training two separate VAE models for generating safe and threatening

trajectories. Each VAE is trained solely on real trajectories in D that corresponds to

its assigned threat class. The output of the generation process is a trajectory’s planar

projection τ̂ ∈ {0, 1}H×W . During training, we evaluate the performance of each VAE

by measuring the MDE with respect to real trajectories. At inference time, we generate

a synthetic trajectory by first selecting the appropriate VAE model based on the target

threat class θ̂. We then sample from the latent space of the corresponding VAE and

decode the sampled latent vector into τ̂ . This strategy conditions trajectory generation

79

Table 3.2. Performance comparison between STATE, its variants, and baseline methods on
safe and threatening trajectories. Lower values are better for all metrics. Best results are
in bold, second-best are underlined, ∗∗∗ indicates statistical significance (Bonferroni-corrected
p-value < 0.001).

Method Threatening Trajectories Safe Trajectories

MDE (↓) SSIM (↓) JSD-AV (↓) JSD-TL (↓) MDE (↓) SSIM (↓) JSD-AV (↓) JSD-TL (↓)
Random Walk 17.380 0.9284 0.0065 0.0539 15.040 0.9529 0.0042 0.0249
Monte Carlo 15.400 0.9440 0.0051 0.0502 14.420 0.9602 0.0061 0.0227
LSTM (113) 5.2501 0.8820 0.0045 0.0265 3.1901 0.9065 0.0052 0.0167
VAE (58) 9.6102 0.9782 0.0025 0.0426 10.710 0.9399 0.0038 0.0187
Traj-GAN (102) 8.2873 0.8561 0.0040 0.0282 6.5236 0.8255 0.0043 0.0174
Diffusion-Synthesis (140) 15.213 0.701 0.0045 0.0045 14.643 0.6950 0.0052 0.0100

STATE (Ours) 1.2703∗∗∗ 0.6614∗∗∗ 0.0010 0.0050 1.6200∗∗∗ 0.6644 0.0020 0.0050
w/o F 8.640 0.8203 0.0020 0.0457 6.250 0.8439 0.0017 0.0222
w/o CLIP 13.34 0.6932 0.0011 0.0093 19.94 0.5230∗∗∗ 0.0019 0.0035
w/oMT 7.530 0.9145 0.0019 0.0074 4.950 0.9260 0.0023 0.0065

on both the target threat class and the target geographical region which the trajectory is

supposed to fly over.

Traj-GAN : We adapt the trajectory generation framework introduced in (102). This

method encodes key locations of the target geographical area, and trains a GAN-based

network to generate trajectories that preserve user privacy.

Diffusion-Synthesis (38): We adapt the diffusion-based trajectory generation frame-

work introduced in (140). This method follows the DDPM framework (56), progressively

adding Gaussian noise to trajectory images over T = 500 timesteps with variance βt

increasing linearly from 10−4 to 0.02. A U-Net architecture with residual blocks and self-

attention mechanisms learns to reverse this corruption, integrating CLIP features and

threat labels through learned embeddings to condition the denoising process. The model

is trained for 100 epochs with batch size 32 using the Adam optimizer at learning rate

2 × 10−4, minimizing mean squared error between predicted and actual noise. At infer-

ence time, the model generates trajectories by starting from random noise and iteratively

denoising conditioned on the target threat class θ̂ and geographical region F .

80

3.5.3.2. Results. Table 3.2 shows the performance of each method according to the

MDE, SSIM , JSD-AV, and JSD-TL metrics, evaluated separately for safe and threat-

ening trajectories.

Our results show that STATE consistently outperforms all baselines across all met-

rics. For instance, it achieves an MDE of 1.2703 for threatening trajectories and 1.6200

for safe ones. In contrast, the best-performing baseline, LSTM (113), obtains MDE scores

of 3.1901 (threatening) and 5.2501 (safe). Therefore, STATE achieves relative improve-

ments of 75.8% and 49.2%, respectively. These differences are statistically significant with

Bonferroni-corrected p−value< 0.001.

As expected, Random Walk and Monte Carlo baselines exhibit the poorest perfor-

mance across all metrics. Surprisingly, the diffusion-based Diffusion-Synthesis (140) per-

forms comparably to these random baselines despite its higher complexity. This underper-

formance can be attributed to data scarcity: our 349 trajectories may suffice to capture

coarse distributional properties (38), as evidenced by relatively low JSD-AV (0.0045 for

threatening and 0.0052 for safe trajectories) and JSD-TL (0.0045 for threatening and 0.01

for safe trajectories), but they are not enough to learn sharp spatial details needed for

precise trajectory generation.

The LSTM, VAE and Traj-GAN baselines are better, highlighting the importance

of learning trajectory structure from data. LSTM usually outperforms VAE and Traj-

GAN, likely because it models the sequential nature of trajectory generation explicitly,

predicting one waypoint at a time based on prior context. In contrast, VAE treats the

trajectory as a holistic object, generating the planar projection in a single decoding step,

which may limit its ability to capture sequential dependencies.

81

However, none of LSTM, VAE, Traj-GAN, and Diff-RNTraj approaches match the

performance of STATE. The superior results achieved by STATE suggest that the combi-

nation of adversarial training and spatial context modeling provides significant advantages

in synthesizing realistic drone trajectories.

3.5.4. Ablation Study

3.5.4.1. STATE’s variants. We evaluated three variants of STATE to identify the

most important components:

STATE w/o MT : This configuration drops the Threat Alignment Network during

training by setting the threat alignment loss weight λT = 0, causing training to solely use

the Trajectory Validity Discriminator. This allows us to assess the contribution of MT

in producing trajectories that align with the target threat class θ̂.

STATE w/o F : Here, we disable the model’s access to the spatial context of the target

geographical area A. The Potential Waypoint Set Generator is conditioned only on the

target threat label θ̂, with no information about the physical environment in which the

trajectory is to be generated. This configuration tests the importance of incorporating

geographic features for generating contextually plausible and spatially coherent trajecto-

ries.

STATE w/o CLIP : This variant replaces the CLIP-based encoder used to extract

map features XF with a simpler, histogram-based encoding strategy (138). This baseline

reduces the model’s capacity to capture spatial correlations and high-level semantics from

the map. Comparing this configuration with the original allows us to assess the benefits of

82

using a high-capacity visual encoder for conditioning the generation process on complex

geographical environment.

3.5.4.2. Results. Table 3.2 shows the performance of each STATE configuration w.r.t.

the MDE, SSIM , JSD-AV, and JSD-TL metrics, evaluated separately for safe and

threatening trajectories. Focusing on the MDE metric, we note that all ablated variants

exhibit a substantial performance drop compared to the full STATE setup. Removing the

geographical context (w/o F) or disabling the Threat Alignment Network (w/oMT) sig-

nificantly degrades performance, highlighting the critical role of both components. These

findings suggest a synergistic effect, wherein both spatial awareness and semantic threat

alignment are necessary for generating accurate trajectories.

Interestingly, replacing the CLIP-based encoder with a histogram-based feature ex-

tractor (w/o CLIP) leads to worse MDE performance than entirely removing the geo-

graphical area input (w/o F). This holds for both threat classes and suggests that an

ineffective map representation can mislead the waypoint generation process. We hypoth-

esize that this outcome stems from the complex nature of F , which deviates from typical

visual imagery and thus challenges simple encoding strategies.

Turning to the SSIM metric, we observe smaller differences among configurations.

The full STATE performs best on threatening trajectories, while STATE w/o CLIP sur-

prisingly outperforms other variants for safe ones. This behavior depends on the nature

of SSIM , which evaluates the diversity of generated trajectories with the same tech-

nique rather than comparing synthetic and real trajectories. In other words, STATE w/o

CLIP generates very diverse safe trajectories, but these trajectories may be far from real

trajectories as evidenced by the much higher MDE score.

83

Finally, in terms of JSD-AV and JSD-TL metrics, differences between configurations

are minimal, suggesting that while map encoding and threat alignment critically impact

trajectory shape (MDE), they exert comparatively less influence on the high-level sta-

tistical properties, i.e., asset value and trajectory length distributions, of the generated

trajectories.

3.5.5. Adversarial Training

Figure 3.5a shows the Jensen-Shannon Divergence (JSD) between the generated and real

trajectory distributions across training epochs. Specifically, we report the JSD computed

over two distributions: the asset visitation frequency and the trajectory length. In both

cases, we observe a consistent decreasing trend, indicating that the generator increasingly

aligns its output with real data as training progresses. Convergence is typically achieved

around epoch 1000, which corresponds to our early stopping criterion.

To further investigate the training dynamics, we analyze the evolution of the latent em-

beddings produced by the Trajectory Validity Discriminator MV . Figures 3.5b and 3.5c

show the two-dimensional t-SNE projections of these embeddings at the beginning (epoch

1) and the end of training, respectively. Specifically, for each real trajectory – either safe

(in green) or threatening (in red) – we generate a synthetic counterpart (in blue), ensuring

that generation occurs over the same geographical region and is conditioned on the same

threat class. We use gray lines to connect a real trajectory with its synthetic counterpart.

Initially, MV successfully maps real and synthetic trajectories to distinct regions of

the embedding space (Figure 3.5b). In contrast, at the end of training (Figure 3.5c), we

observe that real (green and red) and synthetic (blue) trajectories largely overlap in the

84

0 500 1000 1500 2000
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

JS
 D

iv
er

ge
nc

e

Evolution of JS Divergence during Training
Asset Visit
Trajectory Length

(a)

40 30 20 10 0 10 20

t-SNE Dimension 1

40

20

0

20

40

60

t-
SN

E
 D

im
en

si
on

 2

Discriminator Embedding Space (Beginning of the Training)

Real - Threatening
Real - Safe
Synthetic

(b)

30 20 10 0 10 20 30

t-SNE Dimension 1

80

60

40

20

0

20

40

60

t-
SN

E
 D

im
en

si
on

 2

Discriminator Embedding Space (End of the Training)

Real - Threatening
Real - Safe
Synthetic

(c)

Figure 3.5. Adversarial Training: (a) Jensen-Shannon Divergence (JSD) between the gener-
ated and real trajectory distributions over training epochs, evaluated for both asset visit (blue)
and trajectory length (red) distributions; (b-c) The t-SNE visualizations of the embeddings
produced by MV after the first training epoch (b) and at the end of training (c). Grey lines
connect real trajectories with their synthetic counterparts.

embedding space. This indicates that the Waypoint Generator G has successfully learnt

to produce realistic trajectories that are indistinguishable from real samples, thereby

deceiving the discriminatorMV .

In addition, we also observe that at the beginning of training (Figure 3.5b)MV is able

to distinguish real threatening trajectories (in red) and real safe trajectories (in green),

without any supervision. This capability depends on the fact thatMV is conditioned on

the target threat label θ̂, which provides explicit guidance regarding the semantic class

of each input trajectory. Consequently, the corresponding synthetic trajectories (in blue)

are also separated in the embedding space according to their assigned threat label. In

other words, at the beginning of the training process, MV is leveraging θ̂ to distinguish

between real and synthetic samples.

Conversely, at the end of training (Figure 3.5c), the embeddings of threatening (red)

and safe (green) trajectories are no longer clearly separable. This suggests thatMV , while

initially leveraging the threat label for classification, has ultimately prioritized features

that do not depend on threat semantics to distinguish real from synthetic trajectories.

85

Table 3.3. Expert Evaluation: Post-hoc assessment of synthetic trajectories generated with
STATE and the VAE baseline.

Method Precision Recall F1-score Accuracy
θ = 0 θ = 1 θ = 0 θ = 1 θ = 0 θ = 1

VAE (58) 0.970 0.375 0.767 0.857 0.857 0.522 0.780
STATE 0.878 0.733 0.900 0.687 0.888 0.709 0.839

∆ −9.48% 95.5% 17.34% −19.8% 3.62% 35.8% 7.15%

In other words, the conditioning on θ̂ serves as auxiliary information during training,

but it does not dominate the embedding space learnt by the discriminator MV once the

generator becomes proficient. This observation supports our design choice of incorporating

a separate threat-aware feedback mechanism via the Threat Alignment Network MT ,

which explicitly enforces alignment between the generated trajectory and the intended

threat class. By decoupling the semantic alignment objective from the adversarial realism

objective, we ensure that both trajectory plausibility and threat specificity are jointly

optimized by the Waypoint Generator G.

3.5.6. Generalization to Unseen Regions

We generated 100 synthetic trajectories (50 safe and 50 threatening) using STATE and

another 100 using the VAE baseline9, over unseen region of The Hague. Two police officers

from The Hague independently annotated the perceived threat level of each synthetic

trajectory. We use this “ground truth” to compute standard performance metrics, i.e.,

accuracy, precision, recall and F1-score.

3.5.6.1. Results. Table 3.3 shows class-wise precision, recall, and F1-score for STATE

and VAE. STATE consistently outperforms VAE across most metrics. For instance, on the

9We selected the VAE baseline because it is conditioned on both the target geographical area and the
intended threat class, in contrast to the LSTM baseline, which conditions only on location.

86

threatening class (θ = 1), it achieves an F1-score of 0.709, representing a 35.8% improve-

ment over VAE. The performance gap is primarily due to VAE’s low precision (0.375) on

threatening trajectories, while STATE attains 0.733, marking a relative improvement of

95.5%.

In addition, we observe a consistent performance disparity between safe (θ = 0) and

threatening (θ = 1) classes. VAE achieves an F1-score of 0.857 for safe trajectories

and 0.522 for threatening ones. Similarly, STATE reaches 0.888 and 0.709 for safe and

threatening trajectories, respectively. This asymmetry likely reflects the class imbalance

present in the original DEWS dataset – 307 safe versus only 42 threatening real trajec-

tories – which leads to a stronger optimization signal for the safe class during training.

However, the performance gap between classes is narrower for STATE. We attribute this

to the role of the MT , which provides an explicit supervision signal to the generator by

penalizing threat-class misalignment. This design encourages the generator to maintain

threat consistency even for underrepresented categories, i.e., threatening trajectories.

3.6. Conclusions, Limitations, & Future Work

We introduce STATE (Safe and Threatening Adversarial Trajectory Encoder), a novel

cGAN-based framework for synthesizing drone trajectories conditioned on a target threat

level. STATE generates both safe and threatening trajectories over arbitrary geographical

areas, even in the absence of real-world flight data. We show that STATE outperforms five

trajectory generation baselines in terms of spatial plausibility and threat alignment. To

our knowledge, this is the first system that generates threat-conditioned drone trajectories

for security applications. But our work has limitations.

87

Geographical Scope. All experiments were conducted using data from The Hague, in

the Netherlands. While this is realistic, recruiting the very small number of police experts

in other geographies proved challenging. This remains important future work.

Threat Detection. STATE relies on a pre-trained Threat Alignment Network (MT) to

align synthetic trajectories with the target threat class. MT exhibits lower performance

on threatening trajectories. But threat classification is not the primary contribution of

this work, and our framework remains agnostic to the specific threat classifier used.

Threat Semantics. We adopt a binary threat classification schema. However, threat

perception in operational contexts often involves nuanced attributes such as intent, prox-

imity to critical assets, or temporal factors. Future work could explore multi-dimensional

threat representations to provide more granular control and interpretability over the gen-

eration process.

Dual-Use Considerations. We acknowledge that STATE has dual-use potential and

could be misused for malicious drone planning. However, security officials deemed the

benefits (e.g., improved drone threat defense) greater than the risks and approved the

release of the chapter, data, and algorithms.

88

CHAPTER 4

Declarative Logic-based Pareto-Optimal

Agent Decision Making

Chapters 2 and 3 established capabilities for identifying threatening drone trajectories

and generating synthetic training data. However, threat identification alone does not

determine appropriate defensive responses. Autonomous defensive systems operating in

civilian environments must satisfy legal, regulatory, and ethical constraints while pursuing

operational objectives. There are many applications where an autonomous agent, e.g.,

a drone, can simultaneously perform many sets of actions. It must choose one set of

actions based on some behavioral constraints on the agent. Past work has used deontic

logic to declaratively express such constraints in logic, and developed the concept of a

feasible status set (FSS), a set of actions that satisfy these constraints. However, multiple

FSSs may exist and an agent needs to choose one in order to act. As there may be

many different objective functions to evaluate status sets, we propose the novel concept

of Pareto-optimal feasible status sets or POSS. We show that checking if a status set is

a POSS is co-NP-hard. We develop an algorithm to find a POSS and in special cases

when the objective functions are monotonic (or anti-monotonic), we further develop more

efficient algorithms. Finally, we conduct experiments to show the efficacy of our approach

and we discuss possible ways to handle multiple Pareto-optimal Status Sets.

89

4.1. Introduction

Autonomous agents are becoming increasingly important in the real-world. A good

example is self-driving cars (SDC for short) where agents already control several functions,

such as lane changes and speed changes in Tesla vehicles (39). Another example involves

proposals for nuclear power plants involving agents that can increase coolant pressure,

temperature, and more (66). Autonomous agents are also being proposed for use with

implantable medical devices (40). These are critical applications. They are characterized

by certain common features:

Declarative Operating Rules. The agents involved need to take actions while respect-

ing declaratively specified behavioral requirements, i.e., the desired behavior should be

specified in an easy to understand high-level language such as logic, not code specifying

how that desired behavior is to be accomplished (16). For instance, a self-driving car

should be forbidden to move into a lane when the location it is moving to is going to be

occupied by another vehicle. It may be obligatory for an autonomous agent to shut off

certain processes when the coolant level in a power plant drops below some threshold.

An agent managing an implantable device may be permitted but not obliged to warn the

user when there is a danger of a non-life threatening malfunction. All such behavioral

requirements should be stated in a declarative language that is easy to understand for

domain experts.

Concurrent Actions. The agents may perform zero, one or more actions simultaneously,

e.g., shut off a process, send messages to other agents and/or human users.

Constraints on Actions. There are constraints on sets of actions that can be done

concurrently, e.g., coolant pressure cannot be increased and decreased at the same time.

90

Certain combinations of actions may lead to impossible or undesirable states (e.g., one

where there is a nuclear leak). Such constraints can be expressed easily in high-level

logical languages.

Autonomy. The agents are autonomous, i.e., they can make a conscious choice between

different sets of actions that they can take at a given time.

Multiple Objectives. The agents may measure the desirability of a set of actions along

multiple dimensions, e.g., annoyance to user if she gets too many alerts, maximizing safety

of the environment considered, cost, time, and more.

Deontic logic (48; 90) has been studied for more than 50 years. It extends classical logic

to support reasoning with the effects of actions on the state of the world. In multi-agent

applications, agents should operate under certain behavioral constraints. In self-driving

cars, for instance, agents should obey the rules of the road. They may be permitted to

do certain things in some conditions, forbidden from doing things in other conditions,

obliged to do some things in yet other circumstances, and more. Deontic logic therefore

studies the permissions, obligations, and forbidden modalities and develops the logical

foundations of their interactions both with each other, with classical logic and actions.

A declarative deontic logic framework within which we can express what the agent

is permitted to do, obliged to do, and forbidden to do in various situations has already

been proposed by (44; 45). Their “IMPACT” framework defines “agent programs” that

encode desired declarative agent behaviors, the syntactic concept of a status set, and

the semantic concept of a feasible status set (FSS). Intuitively, an FSS captures a set of

actions that the agent can perform, compatible with its operating rules, constraints on

actions, concurrency constraints, and the deontic logic modalities. IMPACT was shown

91

in (118) to support easy articulation of desired high-level behavioral requirements for 3

broad application areas: transportation, supply chain management, and an online store.

However, IMPACT does not incorporate any objective functions. Subsequently, (116)

proposed the concept of optimal status sets in which an agent can choose a feasible status

set (and hence a set of actions to perform) that optimizes a single objective function, but

multiple objective functions are not allowed.

Real world agents may consider many factors. A nuclear power monitoring agent may

wish to minimize the number of alerts sent to the engineering team while simultaneously

maximizing safety. This requires consideration of two orthogonal but incomparable objec-

tive functions. In general, no single solution might simultaneously optimize all objective

functions. A typical approach to deal with this is Pareto-optimality (95): a solution is

Pareto-dominated if there is another solution that strictly improves some objective func-

tion value without degrading the other objective functions’ values. A solution is Pareto-

optimal if it is not Pareto-dominated. The Pareto frontier is the set of all Pareto-optimal

solutions, all of which are considered equally good. To the best of our knowledge, the

combination of deontic logic methods and Pareto-optimality has not been studied before.

In this chapter, we combine deontic logic (105) and Pareto-optimality. Specifically, we

make the following contributions:

(1) We propose the new concept of a Pareto-Optimal (Feasible) Status Set, or POSS

for short, which combines deontic logic and Pareto optimality. It combines the

power of logic and the power of optimization. We show that the problem of

checking if a given status set is Pareto-optimal is co-NP-hard, and it is co-NP-

complete under some reasonable assumptions.

92

(2) We develop the first algorithm to find a POSS for a given agent-state pair.

(3) We develop the first algorithms to compute POSS’s when the objective functions

are monotonic (or anti-monotonic).

(4) We report on a prototype implementation of our framework, showing that POSS

works well on a realistic collaborative SDC scenario, where we vary several pa-

rameters and assess their impact on performance.

The chapter is organized as follows. Section 4.2 discusses related work. Section 4.3

provides a motivating example of a futuristic collaborative SDC scenario in which multiple

cars collaborate to achieve their objectives. Section 4.4 provides a brief overview of

IMPACT (44; 45; 118). Section 4.5 extends IMPACT so that agents consider multiple

objective functions and introduces Pareto-optimal (Feasible) Status Sets. It then studies

the complexity of the problem. Section 4.6 presents exact and heuristic algorithms to

solve this problem. Section 4.7 presents an experimental assessment of these algorithms.

Section 4.8 discusses possible ways to handle the situation where a Pareto front has

multiple Pareto-optimal Status Sets. Section 4.9 describes limitations and outlook for

future work. Section 4.10 concludes the chapter.

4.2. Related Work

We build upon deontic logic based agents introduced by (44; 118). While there is

plenty of previous work on multiagent systems (e.g., see (21; 112; 54)), to the best of our

knowledge, there is only one effort (116) that tries to build agents that optimize their

actions in the presence of both deontic behavioral rules and constraints. (116) is limited

to one objective function, while our approach can handle several. (55) proposes the

93

jDALMAS system, which includes a preference structure based on a theory of normative

positions (69). They consider a partial ordering on actions to be taken by an agent, but

do not consider explicit numerical objective functions. (55) does not consider objective

functions. In addition, we develop novel algorithms for weakly/strongly monotonic and

anti-monotonic objective functions, whereas neither (116) or (55) consider such specialized

objective functions.

(22) provides an excellent overview of logic-based agent systems, but does not say much

about deontic logic (except for the jDALMAS effort mentioned above) or optimization,

suggesting that there is a lot of room for work in this space.

There have been many numeric approaches to Pareto optimization (70; 67; 74; 75;

136; 33) that do not involve logic. All of these algorithms focus on searching for optimal

solutions over the feasible solution space, but they do not consider how to generate feasi-

ble solutions over a logical solution space, which is fundamental for the logical approach.

In multi-agent settings, (26) proposes a distributed approach to find a Pareto-optimal

solution. (127) looks at a very specific scheduling problem where two agents compete

to work on a machine: one agent tries to minimize the number of delayed jobs it initi-

ated, while the other agent wants to maximize a different quantity associated with its

jobs. (137) studies a similar situation. (27) combines deterministic policy gradients with

Pareto optimization to develop good recommender systems. (128) provides an excellent

view of agent-based methods for network traffic management. While these are impor-

tant efforts, none of them combine logic and optimization. The behaviors of these agents

are not declaratively specified and in some cases, optimization focuses on very specific

94

objective functions. In contrast, we provide declarative deontic logic based constraints1

that are easy to explain to stakeholders and show how our objective functions can be

easily optimized. We present different types of algorithms depending on the different

properties of the objective functions (e.g., no restrictions on the objective function, weak-

ly/strongly monotonic, and weakly/strongly anti-monotonic). Additionally, we propose

approximation algorithms.

Future work could examine the use of probabilistic and/or defeasible deontic rules in

situations where there is uncertainty about the state and/or where there is uncertainty

in whether certain behavioral norms can be relaxed (32; 89).

4.3. Motivating Example

Consider a divided highway as shown in Figure 4.1. Cars are traveling from left to

right on one side of the highway which can be thought of as a matrix. For simplicity, in

this example, the number of cars is fixed. Some cells are marked with an “X” to indicate

that there is no road there. Some cells are marked “EXIT” to specify that there is an exit

at that location. The exit also shows the destination (location A or B). A car that exits

at location (4, 4) can make it to both locations A and B, while one that exits at (4, 8)

1A logical theory consists of a set of formulas (which include rules) in logic. An interpretation is an
assignment of truth values to atomic formulas. A model of a logical theory is an interpretation that
satisfies all the formulas in the logical theory. We can therefore see an analogy between integer 0-1
constraints and logic. Just as numeric 0-1 constraints, such as xa + xb ≥ 1, constrain the space of
solutions, logical formulas (including rules) constrain the space of interpretations that can be models.
For instance, considering the logical formula (a ∨ b), the models are the interpretations that make at
least one of a, b true. With the rule a → b acting as a constraint on the space of interpretations, we
limit interest to those interpretations that either make b true or a false, or both. The articulation of how
logical formulas and rules can be viewed as constraints goes back several decades. We refer the reader to
(10; 11; 23) for a detailed exposition on why logical rules can be viewed as constraints. That said, not
all constraints can be viewed as logical rules.

95

Figure 4.1. A highway represented as a matrix (cars traveling from left to right).

can only get to B. Initially, the red car is traveling at 2 cells/second, while the green and

orange cars are traveling at 1 cell/second.

4.3.1. State

We assume the existence of an arbitrary but fixed logical language within which the

state can be expressed. We assume readers are familiar with standard expressions such

as constants, variables, predicate symbols, atoms, and formulas in logic (72). Following

Prolog convention (28), we denote variables with upper case symbols—everything else will

be denoted via lower case symbols.

At any point t in time, the state is a set of ground (i.e., containing constants only)

logical atoms. In our motivating example, we use atoms of the following form:

(1) at(car, x, y, t) describes the location (x, y) of a car at time t, e.g., at(red , 1, 1, 1)

says that at time 1, the red car is at location (1, 1).

(2) speed(car, s, t) is the speed of a car at time t, e.g., speed(red , 2, 1) says that at

time 1, the red car is traveling at 2 cells/second.

96

(3) dest(car, loc) specifies the destination of a car, e.g., dest(red , B) says that the red

car’s destination is B. This means the red car can take either exit in poss:fig:cars.

(4) exit(y, loc) specifies where there is an exit and the location it leads to, e.g.,

exit(8, B) says that there is an exit to B at location (4, 8) (for simplicity, in this

example, we assume exits are always in the bottom lane which is why the x value

is not explicitly stated).

The table below shows the initial state S0 of our running example—additionally, the initial

state stores information on two exits at locations (4, 4) and (4, 8) leading to A,B and B,

respectively. All three agents know this initial state.

car at speed dest

red (1,1) 2 B

green (2,2) 1 A

orange (3,2) 1 B

Furthermore, we assume the existence of a derived predicate pred_at(car, x, y, t+ t′) that

predicts the location (x, y) of car at time t+t′, assuming inertia, i.e., that the car continues

at its current speed without making any changes. This predicate can be readily derived

from the at and speed predicates.

4.3.2. Agent Actions

We assume the existence of a language with a set of action symbols, which generate action

atoms (or simply actions) using the constants and variables from the language used to

express a state above. In our motivating example, the cars are capable of taking the

following actions:

97

(1) accel(car, s1, s2, t) says car accelerates from speed s1 to s2 at time t. Here s1 < s2.

(2) decel(car, s1, s2, t) says car decelerates from speed s1 to s2 at time t. Here s1 > s2.

(3) continue(car, t) keeps car going at its current speed at time t. So if the red car

executes the action continue(red , 1) at time 1, it will end up at location (1, 3) at

time 2.

(4) go_left(car, t) moves car one lane to the left. So if the green car performs this

action in its initial state, then it will end up at time 2 at (1, 3) (which would lead

to a collision if the red car performed the action in the preceding bullet).

(5) go_right(car, t) moves car one lane to the right. So if the green car performs

this action in its initial state, then it will end up at time 2 at (3, 3) (which would

lead to a collision with the orange car if that car were to execute the “continue”

action at time 1).

(6) exit(car, x, y, t) says car is going to exit the highway at location (x, y) at time t.

(7) req(car1 , car2 , action, t) says that car1 requests car2 for permission to perform

action at time t. For instance, req(green, red, go_left(green, 2, 2, 1, 1), 1) has

green telling red that it would like to shift lanes to the left at time 1 from

location (2, 2) going to a current speed of 1. This is like a turn signal. But green

can perform this action only if red responds that it will slow down or shift to the

right in order to avoid a collision.

(8) ok(car1 , car2 , action, t). Here car2 agrees to the request by car1 to perform

action at time t.

(9) deny(car1 , car2 , action, t) is the opposite situation: car2 does not agree to the

request by car1 to perform action at time t.

98

Assumption. Without loss of generality, we assume that one tick of time is enough for

a car to make a request, receive a response, and take an action.2

Each action α has a precondition Pre(α) which is a logical condition, an add list

Add(α), and a delete list Del(α), both of which are sets of ground atoms. Action α is

executable in state St if Pre(α) is true in St—if it is executed, then Del(α) is deleted from

St while Add(α) is added to St in order to yield the new state.

As an example, for the action α = accel(car, s1, s2, t), we have Pre(α) = speed(car, s1, t) & (s1 <

s2), Del(α) = speed(car, s1, t), and Add(α) = speed(car, s2, t+ 1).

Autonomy. Cars can make decisions autonomously. One car may deny (or not re-

spond) to a request from another car.

Collaboration. The messaging actions (req, ok, deny) enable agents to collaborate.

In general, we assume that an application domain has an associated set of action

symbols and that we can define a notion of (ground) action atoms in the usual way (118;

30; 2). The above shows a specific set of action symbols and action atoms in our running

SDC example.

4.4. Background: IMPACT Agents

We assume that arbitrary but fixed sets of actions and predicate symbols describing

the state have been chosen as illustrated via the SDC example in the preceding section.

2One time unit t can be thought as having three parts: by (t+0.33), a car sends one or more messages to
other cars, by (t+0.67) it receives responses, and it decides what to do before (t+1) and does it exactly
at (t+ 1).

99

4.4.1. Agent Program

Every agent has an associated “agent program” that governs what the agent can and

cannot do. In this section, we recall these definitions from (118). If α is an action, then

Fα, Pα, Oα, Doα are status atoms indicating that an action is forbidden, permitted,

obligatory, and to be done, respectively.

An operating rule (or just rule) is an expression of the form

SA← χ & SA1 & . . . & SAn

where SA, SA1 , . . . , SAn are status atoms and χ is a logical condition (expressed using

the predicate symbols). Intuitively, this rule says that if χ is true in the current state

and if status atoms SA1 , . . . , SAn are all true, then SA must also be true. These rules

impose constraints—for example, the rule Fα← Doβ imposes the logical constraint that

if action β is done, then action α is forbidden.

An agent program is a finite set of rules.

Example 4.1. The red car’s allowed behavior can be expressed by the rules reported

in poss:fig:agent-program.

The first seven rules say that the red car is allowed to have a speed in the range [1, 3].

This is a logical constraint which ensures that the red car cannot have a speed outside

such a range. The next two rules say that the red car can take either of the two exits on

the highway (as both lead to its destination, B) when it is near the exits. The following

four rules say the car cannot go left from the leftmost lane, nor can it go right from the

rightmost lane (exit action is not considered a right turn but a different action), while it

100

Paccel(red , S1, S2, T) ← 1 ≤ S2 ≤ 3.
Pcontinue(red , T) ← speed(red , S, T)& 1 ≤ S ≤ 3.

Pdecel(red , S1, S2, T) ← 1 ≤ S2 ≤ 3.
Faccel(red , S1, S2, T) ← S2 > 3.
Fdecel(red , S1, S2, T) ← S2 < 1.

Fcontinue(red , T) ← speed(red , S, T)&S > 3.
Fcontinue(red , T) ← speed(red , S, T)&S < 1.
Pexit(red , 4, 4, T) ← at(red , 3, 4, T).
Pexit(red , 4, 8, T) ← at(red , 3, 8, T).
Fgo_left(red , T) ← at(red , X, Y, T)&X = 1.

Fgo_right(red , T) ← at(red , X, Y, T)&X = 3.
Pgo_left(red , T) ← at(red , X, Y, T)&X > 1.

Pgo_right(red , T) ← at(red , X, Y, T)&X < 3.
Odeny(Car1 , red,

go_left(Car1 , X, Y, S, T), T) ← pred_at(red , X ′, Y ′, T + 1)&
pred_at(Car1 , X ′, Y ′, T + 1)&
Doreq(Car1 , red ,
go_left(Car1 , X, Y, S, T), T).

Figure 4.2. Red car’s agent program.

is permitted to go left (resp., right) when there is a lane on the left (resp., right). The

last rule for the red car exhibits selfish behavior. It always denies requests that cause it

to change its current behavior. All of these rules thus operate as logical constraints on

actions.

The agent program for the green car is identical to that of the red car except for

three differences: (i) it cannot reach a speed greater than 2, (ii) it is obliged to take the

first possible exit, and (iii) the last rule makes the green car’s behavior kinder and more

cooperative as it is willing to adjust its own behavior when other cars request a move.

The agent program for the orange car is identical to that of the green car but it must

stick to a constant speed of 1 and it is permitted to exit at either of the two exits.

An agent program specifies constraints on the agent’s behavior: what the agent is

obliged to do or forbidden from doing in certain situations and what it is permitted but

101

not required to do. Of course, the precondition of any permitted action must be true in

a given state. Thus, these rules act as logical constraints on the agent’s behavior.

4.4.2. Concurrent Action

An agent might choose to simultaneously do multiple things in a given state (e.g., a car

may both accelerate and change lanes at the same time). In this case, we define a function

called conc(A, St) which takes a set of actions A and state St as input and returns a new

state St+1. (118) defines multiple possible ways of defining concurrent action execution.

4.4.3. Integrity Constraints

We can also write a set of integrity constraints defining valid states. Agents must not

to take actions which would lead to a state that violates the integrity constraints. For

instance, we would like an integrity constraint which says that an agent must not enter the

same place as another agent. In general, an integrity constraint is either a denial constraint

or a definite constraint, which we define below. If A1, . . . , An are atoms (including atoms

involving comparison operators), then a denial constraint has the form

← A1& · · ·&An.

This denial constraint says that not all of A1, . . . , An can be true in a given state. For

example,

← at(Car1 , X, Y, T)& at(Car2 , X, Y, T)&Car1 ̸= Car2

is a denial constraint that says that two different cars cannot be in the same place at the

same time (as this would be a collision). Many other denial constraints can be written

102

for our sample SDC scenario. Again, these are all logical constraints on what can and

cannot be done in a given state.

If A0, A1, . . . , An are atoms (atoms involving comparison operators are also allowed),

then a definite constraint is an expression of the form

A0 ← A1& · · ·&An.

Intuitively, a definite constraint says that if A1, . . . , An are all true in a given state, then

A0 must also be true in that state. For example, the definite constraint Loc1 = Loc2 ←

dest(Car, Loc1)& dest(Car, Loc2) says that a given car has only one destination.

4.4.4. Action Constraints

Finally, we allow the specification of a form of logical constraints called action constraints

with the same syntax of the integrity constraints previously introduced, but involving

action atoms instead of ordinary atoms. For instance, in our SDC scenario,

← go_left(Car , T)& go_right(Car , T)

says that a car cannot try to move both left and right at the same time.

← accel(Car , S1, S2, T)& decel(Car , S1′, S2′, T)

says it cannot both accelerate and decelerate at the same time, and

← ok(Car1 ,Car2 ,Action, T)& deny(Car1 ,Car2 ,Action, T)

103

says it cannot both OK and deny the same request.

4.4.5. Status Set Semantics

In this section, we describe the semantics of agent programs from (44). A status set SS

is a finite set of ground status atoms. There are many status sets that can be consistent

with a given state and a given agent program. We call such status sets feasible and they

are defined as follows.

Definition 4.1. A status set SS is feasible w.r.t. a state St, an agent program P , a

set of integrity constraints IC , and a set of action constraints AC , iff:

(1) Oα ∈ SS → Pα ∈ SS ;

(2) Oα ∈ SS → Doα ∈ SS ;

(3) Doα ∈ SS → Pα ∈ SS ;

(4) Pα ∈ SS → Fα /∈ SS ;

(5) Pα ∈ SS → Pre(α) is true in St;

(6) If SA ← χ & SA1 & . . . & SAn is a ground instance of an operating rule in

the agent program P and χ is true in state St and {SA1 , . . . , SAn} ⊆ SS , then

SA ∈ SS .

(7) {α | Doα ∈ SS} satisfies the action constraints in AC ;

(8) If St satisfies IC , then the new state conc({α | Doα ∈ SS}, St) satisfies IC .

Given a set of numeric constraints, a “solution” is an assignment of values to the

variables in those constraints that ensures that all the numeric constraints are satisfied.

Feasible status sets are sets of ground status atoms which are assigned a 0-1 truth value

104

(those in the set are 1, those not in the set are 0) which satisfy a given agent program in a

given state. Thus, the rules in the agent program and the state act as logical constraints

that determine which status sets are feasible and which ones are not.

Example 4.2. Consider the (initial) state presented in poss:sec:state, the red car

agent program in ex:agent-programs, and the integrity and action constraints discussed

in Sections 4.4.3 and 4.4.4, respectively. Let’s focus on the red car. Suppose the red

car has not received any request by other cars, and conc performs all actions in parallel

determining the new positions of the red car given its speed, lane, etc.

The status set SS consisting of the following status atoms is feasible:

Paccel(red , 2, 3, 1),Pcontinue(red , 1),Pdecel(red , 2, 1, 1),

Fgo_left(red , 1),Pgo_right(red , 1),Docontinue(red , 1),

Faccel(red , S1, S2, 1) for every S1 and every S2 > 3,

Fdecel(red , S1, S2, 1) for every S1 and every S2 < 1.

In fact, as per def:feasibleSS, the status set SS above satisfies

• Conditions 1)–4), which can be easily verified;

• Condition 5), assuming that for each Pα in SS , the current state satisfies α’s

preconditions;

• Condition 6), as each status atom that should be derived from the agent program

is indeed in SS ;

• Condition 7), as all action constraints are satisfied by the Doα status atoms in

SS ;

• Condition 8), as the new state satisfies the ICs.

105

4.5. Pareto-optimal (Feasible) Status Sets

In any given state, an agent might have 0, 1, or several feasible status sets. Each

feasible status (FSS) set SS has an associated set Do(SS) = {α |Doα ∈ SS} of actions

to be done if the agent chooses SS . Given an agent program, state, action and integrity

constraints, FSSs are like solutions, just as sets of numeric constraints have solutions.

Which FSS should an agent choose and act in accordance with?

In our SDC scenario, there can be different criteria a car might follow, e.g., a first

criterion might minimize lane shifts (to increase safety); a second criterion might be to

leave the highway at the exit closest to the destination. One feasible status set SS 1

might have it stay in the current lane, feasible status set SS 2 might make the car change

lane on the right bringing it closer to the exit, while feasible status set SS 3 might make

the car change lane on the left, making it further from the exit. Thus, SS 1 and SS 2

are incomparable in that SS 1 optimizes the first criterion but not the second, while the

opposite holds for SS 2. On the other hand, SS 3 is strictly worse than both SS 1 and SS 2

and should be ruled out. Thus, an agent may use one or more criteria to select which

of the several feasible status sets to base its actions on; such criteria are expressed via

objective functions, defined below.

Definition 4.2. An objective function objf is a mapping that assigns a real number

to any given feasible status set SS . objf is said to be:

(1) weakly monotonic iff for any pair SS 1, SS 2 of feasible status sets, SS 1 ⊆ SS 2 →

objf(SS 1) ≤ objf(SS 2);

106

(2) strongly monotonic iff for any pair SS 1, SS 2 of feasible status sets, {α |Doα ∈

SS 1} ⊆ {α |Doα ∈ SS 2} → objf(SS 1) ≤ objf(SS 2);

(3) weakly anti-monotonic iff for any pair SS 1, SS 2 of feasible status sets, SS 1 ⊆

SS 2 → objf(SS 2) ≤ objf(SS 1);

(4) strongly anti-monotonic iff for any pair SS 1, SS 2 of feasible status sets, {α|Doα ∈

SS 1} ⊆ {α |Doα ∈ SS 2} → objf(SS 2) ≤ objf(SS 1).

In part (6) of the previous definition, the higher objf(SS), the better SS is considered

to be. As an example, an objective function that minimizes the number of lane shifts is

defined as follows:

objf(SS) = −|{Do go_left(car, t) ∈ SS} ∪

{Do go_right(car′, t′) ∈ SS}|.

We assume that each agent has an associated non-empty, finite set OF of objective

functions. An agent will act in accordance with a feasible status set that is Pareto-optimal

w.r.t. this set of functions.

Definition 4.3. A feasible status set SS ⋆ is Pareto-optimal w.r.t. a set OF of objective

functions iff there is no other feasible status set SS such that for all objf ∈ OF objf(SS) ≥

objf(SS ⋆) and for some objf ∈ OF objf(SS) > objf(SS ⋆).

It is important to note that the above definition is key—it ties together the logical

notion of a feasible status set (which is like a “solution” over a numeric domain) with the

numeric notion of an objective function.

107

When only one objective function is present (i.e., |OF| = 1), Pareto-optimality coin-

cides with the classical formulation of a (single objective function) optimization problem

over the logical domain. That is, an optimal solution is a solution such that there is no

other solution with a strictly better value for the objective function. In fact, with only one

objective function objf, def:POSS states that a feasible status set SS ⋆ is Pareto-optimal

iff there is no other feasible status set SS such that objf(SS) > objf(SS ⋆).

In general, there could be zero, one, or many Pareto-optimal feasible status sets. In

this case, we can choose one in several ways. One possibility is to choose any solution

randomly—this is what is done in classical numerical optimization. However, additional

options are also possible. We discuss these in Section 4.8.

We investigated the complexity of the central problem of deciding whether a given

status set is a Pareto-optimal feasible status set. We start with the following proposition,

which establishes an upper-bound under reasonable conditions.

Proposition 4.1. If the agent program, the integrity constraints, the action con-

straints, and the action predicate names are fixed, and conc and the objective functions

can be computed in polynomial time, then deciding whether a given status set SS is a

Pareto-optimal feasible status set is in co-NP.

Proof. We first show that deciding whether a status set SS ′ is feasible can be

done in polynomial time under the assumptions in the statement. Conditions 1)–5) of

def:feasibleSS can be clearly verified in polynomial time. Condition 6) can be verified in

polynomial time because the agent program is fixed (and thus, there is a polynomial num-

ber of ground instances of operating rules). Condition 7) can be verified in polynomial

108

time because the action constrains are fixed. Condition 8) can be verified in polyno-

mial time because (i) conc can be computed in polynomial time, (ii) checking constraint

satisfaction can be done in polynomial time, since the integrity constrains are fixed.

We now show that the complementary problem, that is, deciding whether SS is not

a Pareto-optimal feasible status set, is in NP. We first check whether SS is feasible; if

not, then answer yes. As shown above this check can be done in polynomial time. If

SS is feasible, then we guess a status set SS ′, and check that (i) SS ′ is feasible, and

(ii) for all objective functions objf, objf(SS ′) ≥ objf(SS), and for some objective function

objf, objf(SS ′) > objf(SS). Check (i) can be done in polynomial time, as shown above.

Check (ii) can be done in polynomial time because the objective functions can be com-

puted in polynomial time. Also, SS ′ has polynomial size, since the actions’ predicates are

fixed. □

We now turn our attention to the lower-bound and show that deciding whether a given

status set is a Pareto-optimal feasible one is co-NP-hard. In particular, co-NP-hardness

holds even if the agent program, the integrity constraints, the action constraints (whose

set is indeed empty), the action predicate names, and conc are fixed, there is only one fixed

objective function, and conc and the objective functions can be computed in polynomial

time.

Theorem 4.1. Deciding whether a given status set is a Pareto-optimal feasible status

set is co-NP-hard.

Proof. We reduce the NP-hard 3-colorability problem to the complement of our

problem, that is, deciding whether a status set SS is not a Pareto-optimal feasible status

109

set. An instance of 3-colorability is an undirected graph (V,E), for which it has to be

decided whether there exists a 3-coloring, that is, a way of assigning exactly one of three

colors to every vertex in V so that no two adjacent (w.r.t. E) vertices have the same color.

We derive an instance of the complement of our problem as follows. The initial state is

S0 = {vertex(v) | v ∈ V } ∪ {edge(v, v′) | (v, v′) ∈ E} ∪ {color(c1), color(c2), color(c3)}. The

actions are as follows:

• For v ∈ V , we have action dummycola(v, c1) with Pre(dummycola(v, c1)) = true,

Del(dummycola(v, c1)) = ∅, and Add(dummycola(v, c1)) = {dummycol(v, c1), colored(v)}.

• For v ∈ V , c ∈ {c1, c2, c3}, action coloringa(v, c) with Pre(coloringa(v, c)) = true,

Del(coloringa(v, c)) = ∅, and Add(coloringa(v, c)) = {coloring(v, c), colored(v)}.

• For each v ∈ V , action vertexa(v) with Pre(vertexa(v)) = true, Del(vertexa(v)) =

∅, and Add(vertexa(v)) = {vertexs(v)}.

The agent program contains Do vertexa(X)← vertex(X). The integrity constraints are:

← coloring(X,C1)& dummycol(Y,C2)

← edge(X, Y)& coloring(X,C)& coloring(Y,C)

← coloring(X, c1)& coloring(X, c2)

← coloring(X, c1)& coloring(X, c3)

← coloring(X, c2)& coloring(X, c3)

colored(X)← vertexs(X)

The set of action constraints is empty. We also have conc(A, St) = St \ (
⋃

α∈A Del(α)) ∪⋃
α∈A Add(α) and objf(SS) = |{Do coloringa(v, c) ∈ SS}|. The status set SS contains

Do vertexa(v), P vertexa(v), Do dummycola(v, c1), P dummycola(v, c1), for each v ∈ V . We

110

now show that (V,E) has a 3-coloring iff SS is not a Pareto-optimal feasible status set.

First of all, we point out that SS is feasible and objf(SS) = 0, which can be easily verified.

(⇒) Let ϕ : V → {c1, c2, c3} be a 3-coloring of (V,E). We first show that the following

status set is feasible:

SS ′ =
⋃

v∈V {Do vertexa(v),P vertexa(v)} ∪⋃
v∈V {Do coloringa(v, ϕ(v)),P coloringa(v, ϕ(v))}

Conditions 1)–4) of def:feasibleSS are clearly satisfied by SS ′. Condition 5) is satisfied,

as all action preconditions are trivially true. Condition 6) is satisfied since for each

vertex(v) in St, Do vertexa(v) is included in SS ′. Condition 7) is satisfied because there

are no action constraints. Let us now discuss Condition 8). Notice that S0 satisfies

the ICs. We need to show that S1 = conc({α | Doα ∈ SS ′}, St) satisfies the ICs. By

definition of conc, and the actions’ Del and Add sets, S1 = S0 ∪ {vertexs(v) | v ∈ V } ∪⋃
v∈V {coloring(v, ϕ(v)), colored(v)}. Since ϕ is a 3-coloring, it can be easily verified that

all ICs are satisfied by S1. Hence, SS ′ is a feasible status set and objf(SS ′) = |V |. W.l.o.g.

we can assume the original graph has at least one vertex and thus objf(SS ′) > 1, and thus

SS is not Pareto-optimal.

(⇐) Suppose (V,E) has no 3-coloring. We show that there is no feasible status set

SS ′ containing at least one status atom of the form Do coloringa(v, c)—which implies that

SS is Pareto-optimal. Reasoning by contradiction, suppose SS ′ exists. In order for SS ′

to be feasible, it must satisfy Condition 6) of def:feasibleSS, and thus SS ′ must include

{Do vertexa(v) | v ∈ V }. This means that the new state S1 will include {vertexs(v) |

v ∈ V }, as per definition of conc and the Add sets for vertexa(v) actions. In order for

111

S1 to satisfy the last IC, S1 must include {colored(v) | v ∈ V }. Since SS ′ includes at

least one status atom of the form Do coloringa(v, c), S1 includes coloring(v, c), and thus

SS ′ cannot include any status atom of the form Do dummycola(v
′, c1), because otherwise

dummycol(v′, c1) would be in S1 violating the first IC. Thus, the only way for S1 to have

an atom colored(v) for each vertex v ∈ V is that SS ′ has at least one Do coloringa(v, c)

status atom for each vertex v ∈ V . Notice that each status atom Do coloringa(v, c) yields

the atom coloring(v, c) in S1. In order for S1 to satisfy the third to fifth ICs, S1 must

contain at most one coloring(v, c) atom for each vertex v. Thus, S1 contains exactly one

coloring(v, c) atom for each vertex v. Notice that S1 must satisfy also the second IC. Now

it is easy to see that the function assigning to each vertex v the color c iff coloring(v, c)

belongs to S1 is a 3-coloring, which is a contradiction. □

From the results above, we get the following corollary.

Corollary 4.1. If the agent program, the integrity constraints, the action constraints,

and the action predicate names are fixed, and conc and the objective functions can be

computed in polynomial time, then deciding whether a given status set is a Pareto-optimal

feasible status set is co-NP-complete.

4.6. Algorithms

In this section, we introduce several algorithms to compute Pareto-optimal feasible

status sets.

First, we present a “helper” algorithm (used by all other algorithms) to compute the

“closure” of a status set (poss:alg:closure). Then, we propose a baseline algorithm that can

be used with arbitrary sets of objective functions (poss:alg:poss-naive). Next, we develop

112

exact algorithms for weakly/strongly anti-monotonic objective functions (Algorithms 3–

4). These methods leverage anti-monotonicity to improve on the baseline. Their basic

idea is to traverse up a lattice of status sets in a breadth-first fashion, where the lattice is

defined w.r.t. set-inclusion (resp., set-inclusion of Doα atoms) for weakly (resp., strongly)

anti-monotonic objective functions. This strategy allows the algorithms to start from the

“smallest” possibly feasible status sets, look for a Pareto-optimal feasible one, and move

to bigger status sets only if needed.

A similar idea can be applied to weakly and strongly monotonic objective functions,

but the lattice is traversed downwards starting from the “biggest” possibly feasible status

sets. We found this strategy less effective compared to the anti-monotonic case, be-

cause the biggest status sets to start from may contain many contradictory status atoms

(e.g., violating action constraints) and moving to smaller feasible ones might require

traversing several levels of the lattice. For this reason, with weakly/strongly monotonic

objective functions, in order to significantly improve on the baseline algorithm, we intro-

duced heuristics leading to the two approximation algorithms presented in the following

(poss:alg:poss-sma,poss:alg:poss-wma).

All algorithms in this section except for the “helper” one take as input: a state St, an

agent program P , a set IC of integrity constraints, a set AC of action constraints, a conc

function, a set OF of objective functions, and a set A of ground actions. poss:alg:poss-

sma,poss:alg:poss-wma have an additional input τ , which is used for the heuristic search

and will be discussed later.

113

4.6.1. Helper Algorithm

The Closure algorithm (cf. poss:alg:closure) takes as input a status set SS , a current

state St, an agent program P , and a set DC of denial action constraints. The goal of

the algorithm is to compute a status set that includes SS and satisfies Conditions 1)-6)

of def:feasibleSS, as well as Condition 7) w.r.t. denial action constraints only, if such

a status set exists. If a status set is returned, it might not be feasible, as Condi-

tion 7) of def:feasibleSS w.r.t. definite action constraints, as well as the last condition

of def:feasibleSS, still need to be verified.

The algorithm first “closes” SS w.r.t. Conditions 1)–3) of def:feasibleSS (lines 1–6). It

then checks if Conditions 4), 5), and 7) are all satisfied (lines 7–10). If any of them is not

satisfied, then ⊥ is returned. Otherwise, the algorithm iteratively enforces Condition 6)

of def:feasibleSS (lines 11–26), thereby possibly deriving further ground status atoms.

While doing so, the algorithms enforces Conditions 1)–3) of def:feasibleSS (lines 18–21)

and checks that Conditions 4)–5) and Condition 7) (w.r.t. the denial action constraints

in DC) of def:feasibleSS remain satisfied w.r.t. the ground status atoms that are being

derived (lines 22–25)—once again, if any condition is violated, ⊥ is returned, otherwise

the algorithms keeps adding new ground status atoms until a fixpoint is reached and the

resulting set is returned (line 27).

It is worth noting that every ground status atom derived by the algorithm must be

in any status set SS ′ extending SS in order for SS ′ to be possibly feasible. A status set

returned by the algorithm that satisfies also Condition 7) of def:feasibleSS w.r.t. all action

constraints as well as Condition 8) is feasible.

114

Algorithm 1 Closure
Input: A status set SS , a state St, an agent program P , and
1: a set DC of denial action constraints.

Output: A status set or ⊥.
2: for each Oα ∈ SS s.t. Pα ̸∈ SS do
3: Add Pα to SS .
4: end for
5: for each Oα ∈ SS s.t. Doα ̸∈ SS do
6: Add Doα to SS .
7: end for
8: for each Doα ∈ SS s.t. Pα ̸∈ SS do
9: Add Pα to SS .

10: end for
11: if there exists α s.t. (i) {Pα,Fα} ⊆ SS or (ii) Pα ∈ SS and Pre(α) is false in St then
12: return ⊥.
13: end if
14: if {α | Doα ∈ SS} does not satisfy DC then
15: return ⊥.
16: end if
17: SS ′ := SS .
18: repeat
19: SS ′′ := SS ′.
20: for each ground rule r of P do
21: Let r be SA← χ & SA1 & . . . & SAn .
22: if χ is true in St and {SA1 , . . . ,SAn} ⊆ SS ′ then
23: Add SA to SS ′.
24: if SA = Oα then
25: Add Pα and Doα to SS ′.
26: else if SA = Doα then
27: Add Pα to SS ′.
28: end if
29: if there exists α s.t. (i) {Pα,Fα} ⊆ SS ′ or (ii) Pα ∈ SS ′ and Pre(α) is false in

St then
30: return ⊥.
31: end if
32: if {α | Doα ∈ SS ′} does not satisfy DC then
33: return ⊥.
34: end if
35: end if
36: end for
37: until SS ′ = SS ′′

38: return SS ′.

115

The proposition below states an important property that will be leveraged by the

algorithms introduced in the following.

Proposition 4.2. Let LSS = Closure(∅, St, P,DC) for any status St, agent program

P , and set of denial action constraints DC . If LSS = ⊥, then there is no feasible status

set. If LSS ̸= ⊥, every feasible status set (if any) contains LSS .

Proof. When Closure is called with SS = ∅, lines 1–10 have no effect. Then, lines 11-

27 are executed, enforcing Conditions 1)–3) and 6) of def:feasibleSS by possibly deriving

new status atoms. Such status atoms must be necessarily contained in any feasible status

set containing the empty set, and thus in every feasible status set (if any). Recall that

lines 11-27 additionally check whether any of Conditions 4), 5), and 7) of def:feasibleSS is

violated. If a status set violates any of such conditions, then every superset of it violates

the same conditions. Thus, Closure returns ⊥ when the set SS ′ of status atoms currently

computed (which must be included in every feasible status set, if any) violates any of

Conditions 4), 5), and 7) (which will be violated by every superset of SS ′), that is, there

is no feasible status set. If Closure returns a status set, the latter does not violate any of

Conditions 4), 5), and 7) and must be contained in every feasible status set, if any. □

In the sequel, we use the following notation. For any program P , we use gP (resp., χP ,

bP) to denote the number of ground rules of P (resp., the maximum number of atoms in

the condition χ of rules in P , the maximum number of status atoms of rules in P). For

any set of constraints C , we use ||C || to denote the overall number of atoms in C . As

customary, for any set X, we use |X| to denote the cardinality of X. Finally, we use A

to denote the set of all ground actions.

116

Proposition 4.3. The worst-case time complexity of poss:alg:closure is O(|A| · gP ·

(χP · |St|+ |A| · (bP + lg |A|+ |St|+ ||DC ||))).

4.6.2. Baseline Algorithm

We now introduce a baseline algorithm (POSS baseline, cf. poss:alg:poss-naive) to com-

pute a Pareto-optimal feasible status set (if one exists) with an arbitrary set of objective

functions.

Given a set A of actions, we define SA(A) = {Op α | α ∈ A and Op ∈ {F,P,O,Do}}.

Algorithm 2 POSS baseline

Input: A state St, an agent program P ,
1: a set IC of integrity constraints,
2: a set AC of action constraints, a conc function,
3: a set OF of objective functions, and
4: a set A of ground actions.

Output: A Pareto-optimal feasible status set or ⊥.
5: Let DC be the set of denial constraints in AC .
6: LSS = Closure(∅, St, P,DC).
7: if LSS = ⊥ then
8: return ⊥.
9: end if

10: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
11: SA := ∪α∈A{Doα,Oα,Pα}.
12: SA := SA(A) \ SA.
13: S = ∅.
14: for each SS s.t. LSS ⊆ SS ⊆ SA do
15: if SS is a feasible status set then
16: Add SS to S.
17: end if
18: end for
19: if S = ∅ then
20: return ⊥.
21: else
22: return a Pareto-optimal (w.r.t. OF) element of S.
23: end if

117

The algorithm first calls the Closure algorithm with the empty status set, the current

state, the agent program, and the denial action constraints in AC , thereby getting LSS

(lines 1–2). If LSS is ⊥, then there is no feasible status set and the algorithm returns ⊥

(lines 3–4). Otherwise, there might exist feasible status sets, and if any exists it has to

contain LSS . For this reason, lines 1–4 will be replicated in all our algorithms reported in

the following. Thus, the algorithm looks for feasible status sets that are a superset of LSS

(lines 8–11), and if none exists ⊥ is returned (lines 12-13), otherwise a Pareto-optimal

one is returned (lines 14–15). Moreover, a simple pruning is applied when searching for

feasible status sets containing LSS . The algorithm ignores status atoms that cannot be

in any feasible status set (lines 5–7): these are the Doα, Oα, and Pα status atoms for

which Pre(α) is false in the current state (see Conditions 1)–3) and 5) of def:feasibleSS)

or Fα belongs to LSS (see Conditions 1)–4) of def:feasibleSS). Such a pruning will be

applied by all algorithms presented in the following as well.

Theorem 4.2. poss:alg:poss-naive correctly computes a Pareto-optimal feasible status

set.

Proof. By pro:LSS, if LSS = ⊥ in line 3, then there is no feasible status set and the

algorithm correctly returns ⊥. Otherwise, by pro:LSS, LSS is a status set that must be

contained in every feasible status set, if one exists. The algorithm looks for feasible status

sets SS s.t. LSS ⊆ SS ⊆ SA, and returns a Pareto-optimal one among them, if at least

one feasible status set has been found. So, to prove correctness, we need to show that no

feasible status set is missed by the algorithm, that is, there is no feasible status set SS s.t.

SS ⊊ LSS or SS ⊋ SA. pro:LSS implies that there cannot be any feasible status set SS

118

s.t. SS ⊊ LSS . Notice that each status atom Pα s.t. Pre(α) is false in St or Fα ∈ LSS

cannot be included in any feasible status set. For such Pα status atoms, the status atoms

Oα and Doα cannot be included in any feasible status set too, because of Conditions 1)

and 3) of def:feasibleSS. Thus, lines 5–7 safely disregard the status atoms in SA, as they

cannot belong to any feasible status set, and hence there cannot be a feasible status set

SS ⊋ SA. □

Proposition 4.4. The worst-case time complexity of poss:alg:poss-naive is O(|A|2 ·

gP · ||DC ||+ 22|A| · fOF (A) + 2|A| · (|A| · lg |A|+ |A| · |St|+ gP · (|St| · χP + |A| · bP) + |A| ·

||AC ||+ |St| · ||IC ||+ fconc(|A|, |St|))), where fOF (resp., fconc) is the function measuring

the worst-case time complexity of evaluating the objective functions in OF (resp., conc).

The numbers of cars and lanes affect number of rules in the program and the size of the

constraints (gP , ||IC ||, ||DC ||) as well as the number of actions (|A|). Such observations

apply also to the other algorithms presented in the following.

4.6.3. Weakly and Strongly Anti-Monotonic Algorithms

We propose algorithms to compute Pareto-optimal feasible status sets in the presence

of weakly (cf. poss:alg:poss-wam) and strongly (cf. poss:alg:poss-sam) anti-monotonic

objective functions.

Let us start with poss:alg:poss-wam. The basic idea of the algorithm is to traverse

a lattice (w.r.t. set-inclusion) of status sets where the bottom element is the set LSS

computed in lines 1–2. In particular, the lattice is traversed upwards starting from LSS

in a breadth-first fashion. In lines 1–6, the algorithm applies the same pruning discussed

119

Algorithm 3 POSS weakly-anti-monotonic

Input: A state St, an agent program P ,
1: a set IC of integrity constraints,
2: a set AC of action constraints, a conc function,
3: a set OF of weakly anti-monotonic objective functions, and
4: a set A of ground actions.

Output: A Pareto-optimal feasible status set or ⊥.
5: Let DC be the set of denial constraints in AC .
6: LSS = Closure(∅, St, P,DC).
7: if LSS = ⊥ then
8: return ⊥.
9: end if

10: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
11: SA := ∪α∈A{Doα,Oα,Pα}.
12: SA := SA(A) \ (SA ∪ LSS).
13: ToInspect := {LSS}.
14: while ToInspect ̸= ∅ do
15: Candidates := ToInspect .
16: ToInspect := ∅.
17: if Candidates has a feasible status set then
18: return a Pareto-optimal (w.r.t. OF) feasible status set of Candidates.
19: else
20: for each Cand in Candidates do
21: for each Op α ∈ (SA \ Cand) do
22: if (Cand ∪ {Op α}) /∈ ToInspect then
23: Add Cand ∪ {Op α} to ToInspect .
24: end if
25: end for
26: end for
27: end if
28: end while
29: return ⊥.

before for the baseline algorithm. Then, SA consists of the status atoms that might be

added to LSS (line 7). In lines 8–18, the algorithm performs the aforementioned traversal

of the lattice, one level at a time, starting from LSS , where each level is built by adding

one status atom to each status set of the previous level (see lines 15–18). When a feasible

status set exists in a level, a Pareto-optimal one is returned, otherwise the next level is

considered. It is worth noting that each level is built only if needed and the lattice is not

120

entirely materialized at once, which yields computational benefits in terms of both run

time and memory usage. Eventually, if no feasible status set has been encountered, ⊥ is

returned (line 19).

Theorem 4.3. poss:alg:poss-wam correctly computes a Pareto-optimal feasible status

set.

Proof. The same argument in the proof of th:baseline-correctness applies to lines 1–

6 of poss:alg:poss-wam. Thus, the status atoms in LSS ∪ SA are the only ones that can

possibly belong to a feasible status set. It is easy to see that (in lines 8–19) the algorithm

starts from LSS and then iteratively considers bigger status sets, where at each iteration

(of the while loop in lines 9–18) status sets that are incomparable w.r.t. set-inclusion

are considered. At a generic iteration, if a feasible status is found that is Pareto-optimal

among those considered in that iteration, then it must be Pareto-optimal also w.r.t. bigger

status sets, because objective functions are weakly anti-monotonic. □

poss:alg:poss-sam deals with strongly anti-monotonic objective functions, and behaves

like poss:alg:poss-wam, except that the lattice is built w.r.t. set-inclusion of Doα status

atoms.

Theorem 4.4. poss:alg:poss-sam correctly computes a Pareto-optimal feasible status

set.

Proof. The same argument in the proof of th:poss-wam-correctness applies, noting

that status sets are compared w.r.t. Doα status atoms, because objective functions are

strongly monotonic. □

121

Algorithm 4 POSS strongly-anti-monotonic

Input: A state St, an agent program P ,
1: a set IC of integrity constraints,
2: a set AC of action constraints, a conc function,
3: a set OF of strongly anti-monotonic objective functions, and
4: a set A of ground actions.

Output: A Pareto-optimal feasible status set or ⊥.
5: Let DC be the set of denial constraints in AC .
6: LSS = Closure(∅, St, P,DC).
7: if LSS = ⊥ then
8: return ⊥.
9: end if

10: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
11: SA := ∪α∈A{Doα,Oα,Pα}.
12: SA := SA(A) \ (SA ∪ LSS).
13: SA-Do := {Doα | Doα ∈ SA}.
14: SA-FPO := SA \ SA-Do.
15: ToInspect := {LSS ∪X | X ⊆ SA-FPO}.
16: while ToInspect ̸= ∅ do
17: Candidates := ToInspect .
18: ToInspect := ∅.
19: if Candidates has a feasible status set then
20: return a Pareto-optimal (w.r.t. OF) feasible status set of Candidates.
21: else
22: for each Cand in Candidates do
23: for each Doα ∈ (SA-Do \ Cand) do
24: if (Cand ∪ {Doα}) /∈ ToInspect then
25: Add Cand ∪ {Doα} to ToInspect .
26: end if
27: end for
28: end for
29: end if
30: end while
31: return ⊥.

The worst-case time complexity of poss:alg:poss-wam,poss:alg:poss-sam is the one

stated in th:baseline-complexity, as in the worst case, O(2|A|) candidate status sets still

need to be inspected. While this is a theoretical analysis in the worst case, we will show

in poss:sec:experiments that poss:alg:poss-wam,poss:alg:poss-sam indeed provide compu-

tational benefits over the baseline in practice.

122

4.6.4. Weakly and Strongly Monotonic Algorithms

In this section, we introduce approximation algorithms for weakly and strongly monotonic

objective functions.

Let us start with poss:alg:poss-wma, which deals with weakly-monotonic objective

functions. The basic idea is to start with the biggest “possibly feasible” status sets, and

then move to smaller ones if needed (i.e., if no feasible status set has been found). Lines 1–

5 are analogous to the ones of the algorithms discussed so far. In lines 6–14, the algorithm

builds the biggest possibly feasible status sets to start from, applying different pruning

strategies that rule out status sets that are not feasible for sure. First, the algorithm

rules out status atoms of the form Oα, Doα, and Pα for which Pre(α) is not satisfied

in the current state or Fα belongs to LSS—moreover, for such actions α, all Fα status

atoms are included, as they will not conflict for sure with any Oα, Doα, or Pα status

atom (line 6). Second, for actions α not satisfying the aforementioned conditions, to

construct the biggest status sets, either {Fα} or {Oα,Doα,Pα} is considered (lines 7–

14) to avoid status sets that would not be feasible. The while loop in lines 16–31 starts

from the biggest status sets and moves to smaller ones if no feasible one has been found.

At each iteration, only τ (randomly picked) status sets from ToInspect are considered (see

lines 17–18), where τ is an additional input of the algorithm. The status sets in ToInspect

that are not chosen by the random sampling are still left in ToInspect for later inspection.

This allows the algorithm to move faster to lower levels of the status set lattice, which

pays off in terms of running time, as we show in our experimental evaluation. Of course,

the algorithm might return sub-optimal feasible status sets, because when a set of feasible

123

status sets is considered and a Pareto-optimal one is determined among them (lines 19–

20), some other better feasible status sets might have been ignored (not being chosen by

the random sampling).

Smaller status sets are built from the current ones by deleting a single status atom

(lines 23–30), following the following criteria. A status atom of the form Doα is deleted

from a status set if the latter does not contain Oα (lines 27–28), because otherwise the

deletion would yield a non-feasible status set—see Condition 2) of def:feasibleSS. Likewise,

a status atom of the form Pα is deleted from a status set if the latter contains neither Oα

nor Doα (lines 29–30), because otherwise the deletion would yield a non-feasible status

set—see Conditions 1) and 3) of def:feasibleSS. A status atom of the form Oα or Fα is

deleted without checking further conditions (lines 25–26), as their deletion does not yield

violations of Conditions 1)–4) of def:feasibleSS. The algorithm returns ⊥ if no feasible

status set is eventually found (line 32).

Let us consider now poss:alg:poss-sma. The algorithm starts from “possibly feasible”

status sets containing as many Doα status atoms as possible, which are collected into

ToInspect (lines 1–9). The algorithm leverages the following ideas discussed before: it

moves to smaller status sets if no feasible one has been found; it applies the sampling

approach of poss:alg:poss-wma; it reduces the number of status sets to be considered

when initializing ToInspect (in lines 7–9) and when a lower level of the lattice has to be

built (see lines 18–25).

The worst-case time complexity of poss:alg:poss-wma,poss:alg:poss-sma is the one

stated in th:baseline-complexity, as in the worst case, O(2|A|) candidate status sets still

need to be inspected. While this is a theoretical analysis in the worst case, poss:sec:experiments

124

will show that poss:alg:poss-wma,poss:alg:poss-sma provide computational benefits over

the baseline in practice.

4.7. Experimental Assessment

We varied the parameters reported in Table 4.1, where the default value we fixed for

a parameter when varying another parameter is highlighted in bold.

Table 4.1. Varying parameters (default values in bold).

Parameter Values
Number of red cars {1,10, 20, 30}

Number of orange cars {1,10, 20, 30}
Number of green cars {1,10, 20, 30}

Number of lanes {6, 8, 10} (plus exit lane)
Highway length {40, 60,80, 100}

In addition:

• We randomly picked the initial position of each car, ensuring that (i) two cars

are not in the same cell and (ii) all initial positions are before the 10th cell.

• We fixed the speed of each car as follows:

– For red cars, randomly picking from {1, 2, 3}.

– For green cars: randomly picking from {1, 2}.

– For orange cars: equal to 1.

• We randomly picked the destination of each car from {A,B,C,D,E}.

• We fixed the number of exits to a tenth of the highway length, with the first exit

positioned at the 10th cell and with a distance of 10 cells between two consecutive

exits.

125

• We randomly picked the destinations associated with each exit from {A,B,C,D,E},

ensuring that each destination has at least one associated exit.

• For the approximation algorithms, τ was set to 10 (early experiments showed

this to be a good value).

• We used three objective functions: Lane Shift Penalty (LSP), which penalizes

lane shifts in a status set, Exit Miss Penalty (EMP), which penalizes a status

set that makes cars miss the exit (in two time steps), and Change Speed Penalty

(CSP), which penalizes a status set that does not speed up when the exit is too

far or does not slow down when the exit is very close. All objective functions are

weakly and strongly anti-monotonic; as weakly and strongly monotonic objective

functions, we used the same ones but with a flipped sign.

All experiments were performed on a machine with 36 Intel Core i9-10980XE CPUs,

256GB RAM, running Ubuntu 18.04.

4.7.1. Runtime

Figure 4.3 reports the average time needed to compute a POSS when varying the number

of cars of each color, the number of lanes, and the highway length. In all the figures, (i)

POSS Baseline (M) and POSS Baseline (A-M) correspond to Baseline using monotonic

and anti-monotonic objective functions, respectively, (ii) orange lines represent algorithms

using monotonic objective functions, and (iii) blue lines represent algorithms using anti-

monotonic objective functions.

126

Varying number of cars

Varying number of lanes Varying highway length

Figure 4.3. Runtimes obtained when varying: (top) number of cars of each color, (bottom left)
number of lanes, and (bottom right) highway length.

The results show that the runtime of POSS W-A-M is the best, followed by POSS

S-M-approx. As POSS W-A-M is an exact algorithm, this suggests that we should try to

convert true objective functions into similar weakly anti-monotonic ones.

In all, we compared our 4 proposed algorithms with Baseline (i) in 48 cases when

varying the number of cars of each color (4 algorithms × 4 parameter values × 3 colors),

(ii) in 12 cases when varying the number of lanes (4 algorithms × 3 parameter values), and

127

(iii) in 16 cases when varying the highway length (4 algorithms × 4 parameter values).

The results show that (i) our proposed algorithms are faster than Baseline in all of the

76 cases and (ii) on average, our proposed algorithms run much faster than Baseline—see

Table 4.2, where the performance gain of each algorithm Alg is computed as 1− time(Alg)
time(Baseline) .

Table 4.2. Average performance gain vs. Baseline.

Varying POSS POSS POSS POSS
parameter W-A-M S-A-M W-M-approx. S-M-approx.
red cars 95.98% 46.31% 51.58% 79.18%

orange cars 96.02% 50.60% 56.78% 78.50%
green cars 94.76% 43.90% 56.47% 80.28%

lanes 96.17% 43.51% 59.77% 77.52%
Highw. len. 95.98% 60.61% 48.86% 80.90%

4.7.2. Solution Quality for Approximate Algorithms

We also assessed the quality of the solutions computed by our approximate algorithms

POSS W-M-approx. and POSS S-M-approx. Inverted generational distance (IGD) and

hypervolume (HV) are two popular approaches for measuring the solution quality of

approximate algorithms for multi-objective problems (29). IGD measures the distance

between the objective values obtained by the approximate algorithm and the values

in the Pareto front (i.e., the set of objective values corresponding to a set of Pareto-

optimal feasible status sets), and HV measures the diversity and convergence by calculat-

ing the volume between the objective values obtained from the approximate algorithms

and specified reference points. Here, our objective functions are weakly or strongly anti-

monotonic/monotonic, and the optimal objective values do not vary much. Therefore, we

use the IGD approach to measure the quality of the solutions computed by our approx-

imate algorithms. Instead of simply calculating the distance, we looked at the relative

128

quality value(objf ,Alg)
value(objf ,Baseline) , where value(objf ,Alg) is the value obtained for objective function

objf using Alg. Table 4.3 reports the average values of the objective functions introduced

above, when varying the various parameters. The results show that both POSS W-M-

Table 4.3. Average relative quality vs. Baseline. LSP is Lane Shift Penalty, EMP is Exit Miss
Penalty, and CSP is Change Speed Penalty.

Varying POSS W-M-approx. POSS S-M-approx.
parameter LSP EMP CSP LSP EMP CSP
red cars 64.0% 67.9% 77.4% 95.0% 98.1% 92.1%

orange cars 66.2% 70.5% 75.3% 95.9% 99.0% 97.9%
green cars 63.0% 61.8% 76.6% 83.6% 93.1% 76.5%

lanes 62.9% 74.3% 60.0% 96.3% 97.5% 98.9%
Highw. len. 66.5% 64.4% 38.2% 98.4% 99.0% 88.5%

approx. and POSS S-M-approx. are able to provide good quality solutions. The average

relative quality using POSS W-M-approx. ranged from 62.9% to 66.5% for LSP, from

61.8% to 74.3% for EMP, and from 38.2% to 77.4% for CSP. POSS S-M-approx. provided

even better results—its average relative quality ranged from 83.6% to 98.4% for LSP, from

93.1% to 99.0% for EMP, and from 76.5% to 98.9% for CSP. Compared to a fully random

approximation algorithm, the overall relative quality provided by POSS W-M-approx. and

POSS S-M-approx. was much higher (on average, 34.6% for LSP, 32.9% for EMP, and

42.6% for CSP).

4.8. Choosing an Optimal Feasible Status Set

There can be situations where the Pareto frontier contains many Pareto-optimal status

sets PF = {SS 1, . . . , SSn}. When this happens, the agent in question must choose one

of these status sets even though all of these are deemed optimal according to the set of

129

objective functions that were explicitly stated. In this case, many solutions are possible.

We briefly discuss these below.

Random Choice. One possibility is for the agent to randomly choose one of the SS j’s

and take the actions articulated therein. This method is fast and may be appropriate in

cases where the agent needs to act very quickly and a near real-time choice must be made.

Weighted Objective Functions. (43; 120) have suggested that a Pareto-optimal solu-

tion be chosen according to weights that the system designer associates with each objective

function. In this case, we associate a score with each SS j in the Pareto frontier which is

set to a linear combination (using the weights) of each objective function value. The SS j

with the highest score is then chosen.

Clustering-based Approaches. The clustering-based approach (120; 77; 78; 24) is also

an important approach for selecting Pareto-optimal solutions. (77; 78) develop theories

and procedures for selecting and clustering multiple criteria solutions. They proposed that

the mutually exclusive clusters are determined by (i) the similarities between the solutions,

and (ii) the decision-maker’s preference structure. The procedures for making a decision

include (i) generating optimal solutions, (ii) clustering solutions based on their similarities,

and (iii) selecting one or more solutions from each cluster. Specifically, (77) used artificial

neural networks (ANN) with variable weights for clustering and then feedforward ANN for

selecting the best solution for each cluster. In their procedures (77; 78), the decision-maker

is actively involved by comparing and contrasting solutions. (24) extended the clustering

approaches formalizing the concept of k representative points of the Pareto front, where

Pareto optimal solutions are clustered, and then the Pareto frontier is divided into k

130

clusters. The k-means algorithms are used in (120; 24) for clustering. Recently, a graph-

theoretical clustering approach was proposed for finding a reduced set of Pareto optimal

solutions (63), where they construct a contact network by mapping each point in the

objective space to a node, and connecting nodes that are within a certain distance of each

other. One way to use the idea of clustering is to use an off-the-shelf clustering algorithm

to cluster PF . Within a cluster CLh ⊆ PF , we choose the status set SS [h] ∈ CLh

that minimizes the distance to the other members of the cluster (according to a selected

distance metric). Such a status set would be like a pseudo-centroid for that cluster. We

can then create a graph whose nodes are these pseudo-centroids and whose edges are

labeled according to the distance metric and choose the pseudo-centroid with the highest

centrality (e.g., betweenness centrality (19) or Pagerank (20)).

4.9. Limitations and Future Work

We now describe a few limitations of our work that can also lead to potential future

work.

Scalability. In the real-world, there can be thousands of agents (e.g., thousands of cars

on a single highway or road at a given point in time) and the responses to the actions of

other cars has to be done at lightning speed. While the experiments show that POSS can

be solved in 200 milliseconds to 1 second in several cases, there are some important cases

where the computation time can be a few seconds. Fast approximation algorithms that

provide solutions within milliseconds, yet are guaranteed to be within some approximation

error bound of the optimal solution, need to be developed.

131

Scalable Choice of a Pareto-Optimal Status Set. One of the strengths of this chap-

ter is that we can find a Pareto-Optimal Status Set without computing the entire Pareto

frontier. Though we have outlined some methods to choose from a Pareto frontier in

Section 4.8, it is important to adapt our proposed algorithms to find such Pareto-Optimal

Status Sets without computing the entire Pareto frontier as that could compromise scala-

bility. We also need to look at methods to extend the approximation algorithms mentioned

above to this case.

Error-Tolerance. When multiple agents are operating in the real world, there will be

noise and errors, e.g., errors due to sensor malfunction and/or due to communication

latency or dropped packets between agents. What does it mean for a Pareto-Optimal

Feasible Status Set to be robust to some kind of noise or error? How should our algorithms

be changed in order to achieve such robustness without compromising scalability? It is

critical to investigate this question further.

Long-Horizon Decision Making. Our proposed approach can effectively find a POSS

for the next time step. It is worth investigating how to extend our approach for long-

horizon decision making to improve the overall quality of the solution, considering poten-

tial actions of other agents, but without compromising scalability.

4.10. Conclusions

In this chapter, we have developed the concept of a multi-agent system in which

multiple agents each try to optimize multiple objectives in accordance with an input

set of behavioral models and objectives. We specified the behavioral constraints in a

high-level deontic logic, so that users and application developers can express their desired

132

logical constraints easily in symbolic form, while simultaneously expressing their objective

functions numerically. Our agents can work with any behavior model expressed in the

deontic logic used here and any set of objective functions.

This chapter makes several novel contributions. To the best of our knowledge, this

is the first work to consider multiple objective functions when deciding what actions a

deontic logic agent should take. Second, we are the first to show co-NP-hardness of

deciding whether a given status set is a POSS. Third, we are the first to develop (multiple)

algorithms for solving the POSS problem both exactly as well as approximately under

varying assumptions on the form of the objective functions and conducted an extensive

set of experiments.

While there are opportunities for future research as discussed in Section 4.9, our work

represents a first contribution to the science that integrates deontic logic for high level

reasoning and Pareto optimization methods for lower-level reasoning, which can be applied

in several real-world applications involving multiple agents.

133

Algorithm 5 POSS weakly-monotonic-approximate
Input: A state St, an agent program P ,
1: a set IC of integrity constraints,
2: a set AC of action constraints, a conc function,
3: a set OF of weakly monotonic objective functions,
4: a set A of ground actions, and
5: an integer τ (number of samples for randomly picking).
Output: A feasible status set or ⊥.
6: Let DC be the set of denial constraints in AC .
7: LSS = Closure(∅, St, P,DC).
8: if LSS = ⊥ then
9: return ⊥.
10: end if
11: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
12: ToInspect := {LSS ∪ {Fα | α ∈ A}}.
13: for each α ∈ (A \A) do
14: Tmp := ∅.
15: for each SS ∈ ToInspect do
16: if Pα /∈ SS then
17: Add SS ∪ {Fα} to Tmp.
18: end if
19: if Fα /∈ SS then
20: Add SS ∪ {Oα,Doα,Pα} to Tmp.
21: end if
22: end for
23: ToInspect := Tmp.
24: end for
25: Done := ∅.
26: while ToInspect ̸= ∅ do
27: Candidates := random(τ,ToInspect).
28: ToInspect := ToInspect \ Candidates.
29: if Candidates has a feasible status set then
30: return a Pareto-optimal (w.r.t. OF) feasible status set of Candidates.
31: else
32: for each Cand in Candidates do
33: for each Op α ∈ Cand do
34: if Op α /∈ LSS and (Cand \ {Op α}) /∈ ToInspect and (Cand \ {Op α}) /∈ Done then
35: if Op = O or Op = F then
36: Add Cand \ {Op α} to ToInspect .
37: end if
38: if Op = Do and Oα ̸∈ Cand then
39: Add Cand \ {Op α} to ToInspect .
40: end if
41: if Op = P and Oα ̸∈ Cand and Doα ̸∈ Cand then
42: Add Cand \ {Op α} to ToInspect .
43: end if
44: end if
45: end for
46: end for
47: Add Candidates to Done.
48: end if
49: end while
50: return ⊥.

134

Algorithm 6 POSS strongly-monotonic-approximate

Input: A state St, an agent program P ,
1: a set IC of integrity constraints,
2: a set AC of action constraints, a conc function,
3: a set OF of strongly monotonic objective functions,
4: a set A of ground actions, and
5: an integer τ (number of samples for randomly picking).

Output: A feasible status set or ⊥.
6: Let DC be the set of denial constraints in AC .
7: LSS = Closure(∅, St, P,DC).
8: if LSS = ⊥ then
9: return ⊥.

10: end if
11: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
12: A′ := A \A.
13: SA-DPO :=

⋃
α∈A′{Doα,Pα,Oα}.

14: SA-F := {Fα | α ∈ A}.
15: ToInspect := {LSS ∪ SA-DPO ∪X | X ⊆ SA-F}.
16: Done := ∅.
17: while ToInspect ̸= ∅ do
18: Candidates := random(τ,ToInspect).
19: ToInspect := ToInspect \ Candidates.
20: if Candidates has a feasible status set then
21: return a Pareto-optimal (w.r.t. OF) feasible status set of Candidates.
22: else
23: for each Cand in Candidates do
24: for each Doα ∈ Cand do
25: if Doα /∈ LSS then
26: if (Cand \ {Doα,Pα,Oα}) /∈ ToInspect and (Cand \ {Doα,Pα,Oα}) /∈

Done then
27: Add Cand \ {Doα,Pα,Oα} to ToInspect .
28: end if
29: if (Cand \{Doα,Oα}) /∈ ToInspect and (Cand \{Doα,Oα}) /∈ Done then
30: Add Cand \ {Doα,Oα} to ToInspect .
31: end if
32: if ((Cand ∪ {Fα}) \ {Doα,Pα,Oα}) /∈ ToInspect and ((Cand ∪ {Fα}) \
{Doα,Pα,Oα}) /∈ Done then

33: Add (Cand ∪ {Fα}) \ {Doα,Pα,Oα} to ToInspect .
34: end if
35: end if
36: end for
37: end for
38: Add Candidates to Done.
39: end if
40: end while
41: return ⊥. =0

135

CHAPTER 5

GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

In Accordance with Norms

Previous chapters established capabilities for threat prediction (Chapter 2), data gen-

eration (Chapter 3), and legally compliant decision-making (Chapter 4). However, urban

drone defense requires not only identifying optimal responses to known threats but also

adaptive learning of effective strategies as adversarial tactics evolve. Consider a drone

swarm attack by an adversary (RED) who targets a city C defended by a player (BLUE),

where BLUE must comply with various legal and ethical requirements that RED ig-

nores. Will such compliance requirements negatively impact BLUE’s defense of C? We

propose GUARDIAN (Governance-Unified Aerial Reinforcement-Defense In Accordance

with Norms), a novel decision-making framework that integrates reinforcement learning

(RL) with deontic logic, which enables BLUE to determine how a set of legal/ethical

norms influences the defense of a target city attacked by a set of drones. We extensively

evaluate GUARDIAN by varying city size, the number of drones, the ratio of BLUE vs.

RED drones, and other parameters. Surprisingly, our experiments show that BLUE’s

defense of C may not always be compromised by the requirement for compliance, even if

RED attacks in violation of the norms. As current conflicts increasingly involve drones,

GUARDIAN addresses the challenge of ethical compliance in RL-based decision making

136

in defense scenarios and of building trust in autonomous systems, towards ethical and

secure deployment of autonomous defense systems.

5.1. Introduction

Drones have become a major part of warfare and terrorism. Terror groups such as

Hezbollah (57) have operated drones since 2004 (115). ISIS, the Badr Brigade and armed

groups in Libya (106) have also invested in drone warfare. Drones were used in a terror

attack on the Jammu Air Force Station in India in June 2021.1 (5) describes drone use

by several groups, including ISIS, Hayat Tahrir al Sham in Syria, the Houthis, the PKK,

Boko Haram, Marawi militants in the Philippines, and many others. The May 2025

India-Pakistan conflict saw the use of drones.2 The ongoing conflict in Ukraine has seen

numerous drone attacks on cities.3

There has also been considerable discussion on how drone warfare might violate the

Laws of War (126) or International Humanitarian Law (42). Hence, it is critical to answer

the following question: When one side (BLUE) is defending a city C (or region) using a

drone swarm that complies with a set of norms, and another side (RED) is attacking C

without complying with those norms, how disadvantaged is BLUE?

Figure 5.1 illustrates this challenge. A defending drone (B1) encounters an attacking

drone (R1) that has infiltrated a high-value civilian area containing critical infrastructure.

The defender faces a decision shaped by two competing imperatives: neutralizing the

threat and avoiding civilian harm.

1https://www.msn.com/en-in/news/newsindia/use-of-drones-by-terror-groups-an-add-on-to-worries-
india-at-unga/ar-AALzkhl?ocid=uxbndlbing
2https://www.bbc.com/news/articles/cwy6w6507wqo
3https://www.understandingwar.org/backgrounder/russian-drone-innovations-are-likely-achieving-
effects-battlefield-air-interdiction

https://www.msn.com/en-in/news/newsindia/use-of-drones-by-terror-groups-an-add-on-to-worries-india-at-unga/ar-AALzkhl?ocid=uxbndlbing
https://www.msn.com/en-in/news/newsindia/use-of-drones-by-terror-groups-an-add-on-to-worries-india-at-unga/ar-AALzkhl?ocid=uxbndlbing
https://www.bbc.com/news/articles/cwy6w6507wqo
https://www.understandingwar.org/backgrounder/russian-drone-innovations-are-likely-achieving-effects-battlefield-air-interdiction
https://www.understandingwar.org/backgrounder/russian-drone-innovations-are-likely-achieving-effects-battlefield-air-interdiction

137

To answer this question, we developed GUARDIAN, a testbed for AI-enabled drone

swarms. This chapter makes the following contributions:

• GUARDIAN assumes that a BLUE (resp., RED) headquarters (HQ) operates a

set of BLUE (resp., RED) drones.

• Deontic logic (50) was invented ins (79) to express conditions under which an

action is permitted, forbidden, or obligatory. Since then, it has been extensively

used to express laws and regulations (53; 81). GUARDIAN’s BLUE drones com-

bine deontic logic with Reinforcement Learning (RL) to combat RED. This en-

ables military planners to use GUARDIAN to plan operations that comply with

relevant laws/ethics. To our knowledge, this is one of the first combinations of

drone swarms, deontic logic, ethics, and RL in security settings. RED has no

compliance requirements, but also uses RL.

• We extensively evaluate GUARDIAN by varying city size, the number of drones,

and the ratio of BLUE vs. RED drones, as well as other parameters. Our ex-

periments show that the requirement to comply with norms is not necessarily a

disadvantage for BLUE. While it is not surprising that when RED drones are

the majority, BLUE generally does not win, when the ratio BLUE/RED drones

is higher, the city protection achieved is almost as effective as when there are no

norms to be satisfied.

5.2. Related Work

Recent research (4; 133; 7) has explored methods to ensure that RL agents adhere to

safety constraints while optimizing rewards, which involve synthesizing a reactive “shield"

138

to enforce properties specified in temporal or probabilistic logic. This shield monitors

the actions of the RL agent and intervenes only when a chosen action would violate the

specified constraints, thereby ensuring compliance with safety requirements during both

learning and execution phases. (87) devised defeasible deontic logics to specify and enforce

normative behavior in RL agents. (88) also introduced a normative supervisor module

that embeds a theorem prover for defeasible deontic logic within the RL control loop.

The supervisor acts both as an event recorder and as a real-time compliance checker to

ensure alignment with ethical prescriptions. (110) proposed a probabilistic deontic logic

to specify the obligations of stochastic systems, including ethical responsibilities. Their

logic tries to align with the semantics of MDPs. (111) further proposed Expected Act

Utilitarian deontic logic which facilitates reasoning about an agent’s ethical and social

obligations, permissions, and prohibitions at design time. It enables designers to identify

conflicts between an agent’s actions and its normative constraints. This approach manages

trade-offs between mission objectives and ethical considerations, operating at the logical

level rather than solely at the reward level.

Instead of only considering the behavior of a single agent, GUARDIAN integrates RL

with deontic logic within multiagent environments. It appears to be the first system to do

so in a military drone swarm cooperation-competition environment.

5.3. The GUARDIAN Framework

GUARDIAN involves two teams (BLUE and RED) with drones flying over a city C

which is represented as an (M ×N) grid. Each cell (i, j) (for i ∈ [1,M], j ∈ [1, N]) has a

139

10040 90

70

20

90 50 30 50 40

50 60 60 50

60 60

50 60 60 50

40 50 70 50 40

B1

B2

R1 R2

C Legend:

Blue drone

Red drone

CCTV

Civilian area

Cell values:
infrastructure
importance

Figure 5.1. Example 1: A 5×5 urban defense scenario. Green cells represent civilian areas with
restrictions on engagement. Cell values indicate infrastructure importance. At this time step,
RED drone R1 has infiltrated the highest-value civilian area while BLUE drones B1 and B2
must decide their response under ethical constraints.

value vi,j(t) ∈ R≥0 at any time t. Cell (i, j) is alive at time t if vi,j(t) > 0 — otherwise it

is dead. The value of the city at time t is V (t) = Σi∈[1,M],j∈[1,N]vi,j(t).

BLUE defends city C using a set of BLUE drones. All drones, BLUE and RED, can

autonomously fly, capture/send imagery to HQ, sense other drones, and fire at them.

BLUE also has CCTV cameras for surveillance. BLUE HQ uses captured data from the

drones and CCTV cameras for decision making. BLUE must abide by a given set of ethical

norms. RED operates drones and an HQ with the same actions as BLUE with the goal

of destroying city C. In addition, RED drones can fire at cell (i, j). RED HQ uses data

from RED drones to compute optimal strategies to maximize damage to BLUE (city and

drones). But RED does not follow any ethical norms.4 Formal definitions of these actions

are reported in Appendix C.1.4

4This represents reality as terrorists do not follow ethical/legal norms.

140

5.3.1. Motivating Example

We use a simplified urban defense scenario throughout this chapter to illustrate key con-

cepts. Figure 5.1 shows a 5×5 grid (though experiments use up to 128×128). Green cells

indicate civilian areas, values represent infrastructure importance. Two defending BLUE

drones must protect against Two attacking RED drones. While RED drones operate

without ethical constraints, BLUE drones must comply with rules of engagement.

At time step t, BLUE drone B1 observes RED drone R1 occupying the central high-

value civilian cell. This scenario illustrates the core challenge: how can B1 effectively

defend critical infrastructure while respecting ethical constraints? We formalize ethical

constraints using two deontic norms:

• Example Norm A: Forbid firing in civilian areas unless facing immediate threat

• Example Norm B: Obligate engagement when threats endanger high-value neigh-

bors

• Example Norm C: Forbid firing at cells (only RED can destroy city infrastructure)

These norms generate multiple feasible actions for B1, creating a branching decision

space that balances tactical effectiveness with ethical compliance. Hence, even in this

small example, there are numerous feasible actions. The deontic logic layer (discussed

in the next subsection) ensures only ethically and/or legally compliant actions remain

available to drones.

Notably, both B1 and B2 could potentially engage R1 since it occupies the highest-

value cell. However, the BLUE headquarters, which aggregates observations from both

drones and the CCTV camera, recognizes that optimal defense requires coordinated ac-

tion. The HQ computes joint strategies and suggests B1 engage R1 while recommending

141

B2 move toward R2 at position (1,5). This coordination prevents redundant targeting

and ensures comprehensive threat coverage. Each drone validates the HQ’s suggestion

against its plan before execution, maintaining ethical compliance while achieving tactical

coordination.

5.3.2. Deontic Ethical/Legal Norms

Our deontic logic has two kinds of logical atoms: state atoms and action atoms. State

atoms describe the current state of the environment and drones, while action atoms de-

scribe actions that drones can perform. Actions have preconditions and effects detailed

in Appendix C.1.5 and C.1.6.

State Predicates for Drones.

• blue(d) / red(d): Drone d is on the BLUE (defending) or RED (attacking) Team.

• position(d, i, j, t): Drone d is located in cell (i, j) at time t. Formally, this predi-

cate holds iff xd(t) = (i, j), where xd(t) is the position vector defined in Appen-

dix C.1.

• InFireRange(d, d′): Drone d′ is within drone d’s firing range, i.e., ∥xd(t)−xd′(t)∥ ≤

fd.

• HasPayload(d): Drone d has nonzero ammunition remaining, i.e., pd(t) > 0.

• ImmediateThreat(d′): Drone d′ is deemed an immediate threat. This holds when

the observed public state of d′ satisfies Bd′ > 0 (operational) and pd′ > 0 (armed).

• SameTeam(d, d′): Drones d and d′ belong to the same team.

State Predicates for Environment.

• CivilianArea(i, j): Cell (i, j) is designated as a protected civilian region.

142

• Adjacent(i, j, p, q): Cell (p, q) is orthogonally adjacent to (i, j), i.e., |i− p|+ |j −

q| = 1 and both cells are within grid bounds.

State Predicates for HQ Communication.

• CommConsistent(d, t): Communication between drone d and its HQ is function-

ing at time t (modeled as Bernoulli with probability pcomm).

• AssignedAction(d, a, t): The HQ has assigned action a to drone d at time t.

Derived Utility Predicates. Certain deontic norms compare the utility of neighboring

cells to determine engagement obligations. We introduce two threshold parameters λ and

λ′ where 1 < λ < λ′, chosen by domain experts (e.g., λ = 1.1, λ′ = 2.0).

• HasLowerUtilityNeighbor(i, j, t, λ): Cell (i, j) has at least one neighbor with

strictly lower utility, and no neighbor exceeds λ · vi,j(t):

∃(p, q) : Adjacent(i, j, p, q) ∧ vp,q(t) < vi,j(t),

∀(p′, q′) : Adjacent(i, j, p′, q′)⇒ vp′,q′(t) < λvi,j(t).

Intuition: If a RED drone is not immediately threatening and might move to a

less valuable cell, BLUE should wait rather than engage.

• AllNeighborsAbove(i, j, t, λ): Every neighbor of (i, j) has utility ≥ λ · vi,j(t):

∀(p, q) : Adjacent(i, j, p, q)⇒ vp,q(t) ≥ λ vi,j(t).

Intuition: If all surrounding cells are more valuable, allowing the RED drone to

move risks greater damage.

143

• HighValueNeighbor(i, j, t, λ′): At least one neighbor of (i, j) has utility ≥ λ′ ·

vi,j(t):

∃(p, q) : Adjacent(i, j, p, q) ∧ vp,q(t) ≥ λ′ vi,j(t).

Intuition: Even if most neighbors are not critical, one extremely high-value neigh-

bor demands immediate engagement.

Action Predicates.

• FireAtDroned(d
′): Drone d fires at drone d′.

• FireAtCelld(i, j): Drone d fires at cell (i, j) to destroy infrastructure.

• MoveTod(i, j): Drone d moves to cell (i, j).

• ExecuteAssignedActiond(a): Drone d executes HQ-assigned action a.

We do not claim new contributions to deontic logic in this chapter. We build on (44;

45). Our contribution is in the combination of deontic logic and Reinforcement Learning

and their application to protecting cities from drone swarm attacks.

A status atom in GUARDIAN is an expression of the form Pa, Oa, Fa, or Do a, indi-

cating that action atom a is permitted, obligatory, forbidden, or to be done, respectively.

A status set is a set of status atoms. A Deontic Rule (DR for short) has the form

SA← χ & SA1 & . . . & SAn

where SA, SA1 , . . . , SAn are status atoms and χ is a conjunction (logical AND) of state

predicates. BLUE drones have an associated set Nd of DRs.

GUARDIAN uses eight deontic norms (expressed as Deontic Rules) obtained in con-

sultation with security experts:

144

DR 1: Never firing at cell. A BLUE drone is always forbidden from deliberately firing

on a cell (i, j). Only RED drones may destroy city infrastructure.

DR 2: Prohibition of firing at civilian areas. The BLUE drone must refrain from firing

at a RED drone in a cell (i, j) designated as a civilian area, unless the RED drone is an

immediate threat. For example, if both drones are co-located in a hospital cell and the

RED drone is not an immediate threat, the BLUE drone is forbidden from engaging.

DR 3: Obligation to follow HQ orders (if communication is consistent). The BLUE

drone must comply with HQ instructions when the communication channel is reliable,

ensuring centralized coordination.

DR 4: Prohibition of friendly fire. A BLUE drone must never fire at another BLUE

drone.

DR 5: Permission to engage a RED drone in a civilian area (under threat). If a RED

drone is an immediate threat inside a civilian area, the BLUE drone may fire to prevent

severe harm. This overrides DR 2 when threat conditions are met.

DR 6: Forbid firing if RED drone is not an immediate threat and a lower-utility

neighbor exists. If the RED drone is not evidently threatening (¬ImmediateThreat(d′))

and cell (i, j) has a lower-utility neighbor, the BLUE drone should wait, hoping the RED

drone relocates to the less valuable cell.

DR 7: Obligated to engage a threat if all neighbors are higher utility. If all neighboring

cells are more valuable than (i, j) and the RED drone is an immediate threat, the BLUE

drone must fire immediately to prevent the threat from moving to more critical cells.

145

DR 8: Obligated to engage a threat if any neighbor is extremely high-value. If any

neighboring cell is extremely critical (utility ≥ λ′ · vi,j(t)) and the RED drone is an

immediate threat, the BLUE drone must fire to prevent catastrophic damage.

The formal specification using deontic operators is:

Formal Specification of Norms Nd as Deontic Rules

Norm 1: Never firing at cell: FFireAtCelld(i, j)← blue(d)

Norm 2: Prohibition of firing at civilian areas: FFireAtDroned(d
′) ← blue(d) ∧

red(d′)∧position(d, i, j, t)∧position(d′, i, j, t)∧CivilianArea(i, j)∧ InFireRange(d, d′)∧

¬ImmediateThreat(d′)

Norm 3: Obligation to follow HQ orders: OExecuteAssignedActiond(a) ← blue(d) ∧

CommConsistent(d, t) ∧AssignedAction(d, a, t)

Norm 4: Prohibition of friendly fire: FFireAtDroned(d
′) ← blue(d) ∧ blue(d′) ∧

SameTeam(d, d′)

Norm 5: Permission to engage under threat: PFireAtDroned(d
′) ← blue(d) ∧

red(d′)∧position(d, i, j, t)∧position(d′, i, j, t)∧ InFireRange(d, d′)∧CivilianArea(i, j)∧

ImmediateThreat(d′)

Norm 6: Forbid firing if lower-utility escape exists: FFireAtDroned(d
′) ←

blue(d) ∧ red(d′) ∧ position(d, i, j, t) ∧ position(d′, i, j, t) ∧ InFireRange(d, d′) ∧

¬ImmediateThreat(d′) ∧HasLowerUtilityNeighbor(i, j, t, λ)

Norm 7: Obligated engagement (all neighbors higher): OFireAtDroned(d
′) ←

blue(d) ∧ red(d′) ∧ position(d, i, j, t) ∧ position(d′, i, j, t) ∧ InFireRange(d, d′) ∧

ImmediateThreat(d′) ∧AllNeighborsAbove(i, j, t, λ)

Norm 8: Obligated engagement (critical neighbor): OFireAtDroned(d
′) ←

blue(d) ∧ red(d′) ∧ position(d, i, j, t) ∧ position(d′, i, j, t) ∧ InFireRange(d, d′) ∧

ImmediateThreat(d′) ∧HighValueNeighbor(i, j, t, λ′)

146

Deontic Logic
Module

State Aggregator
Module

GUARDIAN
Environment

Testbed

Reward Compute
Module

Policy Learning
Module

Experience
Buffer

Drones

CCTVs

Update Drone Policy

Action Recommendation

Update HQ Policy

Communicate and

Share State

Drone Decision Layer Action Execution Layer

Learning LayerHQ Decision Layer

1

1

3

2

4

5HQ Policy Network

Local State

CASs

Action

Drone Policy Network

Figure 5.2. Overview of the GUARDIAN architecture. Drones and CCTVs (1) share state
information with both individual decision modules (2) and headquarters (3). Each drone’s
deontic logic module computes feasible actions (CASs) to ensure ethical compliance before the
policy network makes decisions. The HQ aggregates global state and provides coordination
recommendations, but drones retain autonomy to validate these against feasible status sets.
Actions execute in the environment (4), generating rewards that feed into the learning layer
(5) to update both individual drone and HQ policy networks. This design enables centralized
training with decentralized, ethically-constrained execution.

In a given state s at time t, drone d computes a set Fd(s) of feasible status sets which

are guaranteed to satisfy all norms (44; 45):

(5.1) Fd(s(t)) = {SS d | SS d is a status set feasible in state s(t)}.

We write Fd(s) when the time index is clear from context.

Each SS d ∈ Fd(s) contains some subset of Doαd status atoms, where αd is a ground

action for drone d . Hence, each feasible status set SS d implicitly represents a concurrent

action set (CAS)

(5.2) XSSd
= {αd | Doαd ∈ SS d}.

Each XSSd
satisfies all DRs by results in (44).

147

Returning to our motivating example (Figure 5.1), consider BLUE drone B1 and RED

drone R1 in the same cell (3,3). Let us assume R1 has payload remaining (so it is an

immediate threat). In this state, B1’s deontic logic module computes the following feasible

status sets (FSS):

• FSS-1: {P(FireAtDroneB1(R1)),Do(FireAtDroneB1(R1))}

Rationale: Since R1 is an immediate threat in a civilian area, Example Norm A

permits engagement. This status set chooses to execute the fire action.

• FSS-2: {P(MoveToB1(up)),Do(MoveToB1(up))}

Rationale: Moving to cell (2, 3) is always permitted. This status set chooses to

reposition rather than engage.

• FSS-3: {P(MoveToB1(down)),Do(MoveToB1(down))}

Rationale: Moving to cell (4, 3) is permitted. This represents another reposition-

ing option.

• FSS-4: {P(FireAtDroneB1(R1)),P(MoveToB1(left)),Do(MoveToB1(left))}

Rationale: Although firing is permitted, this status set chooses to move left to

cell (3, 2) instead.

In contrast, consider an infeasible status set: {Do(FireAtCellB1(3, 4))} is infeasible

because it violates Example Norm C, which forbids BLUE drones from firing at cells. No

feasible status set can include this action.

Now suppose R1 had no payload remaining (i.e., not an immediate threat). In this

case: {Do(FireAtDroneB1(R1))} would be infeasible because Example Norm A forbids

firing in the civilian area. The status set would contain F(FireAtDroneB1(R1)), making

any set with Do(FireAtDroneB1(R1)) infeasible.

148

This example illustrates how the same physical state can yield different feasible status

sets depending on threat assessment, and how ethical norms constrain the action space

available to BLUE drones.

5.3.3. Feasible Status Set Computation

We present the procedure for computing drone d’s feasible status sets. Our approach

relies on two algorithms from (36): (1) Least Status Set (LSS) generation, and (2) Ethical

Status Set enumeration. Throughout these algorithms, we write Pre(αd) to denote the

preconditions of action αd, as formally defined in Appendix C.1.5.

The computation also enforces two types of constraints:

• Integrity Constraints (IC): Conditions ensuring system consistency, such as

requiring a target to be within firing range before engagement.

• Action Constraints (AC): Rules governing permissible action combinations,

such as preventing a drone from engaging multiple targets simultaneously.

Formal definitions of these constraints are provided in Appendix C.2.

If LSS returns ⊥, no ethically compliant action exists; the drone executes no-op.

Otherwise, each feasible status set SS d yields a concurrent action set XSSd
= {αd |

Doαd ∈ SS d}.

5.4. Combining Deontic Logic with RL

BLUE’s actions must comply with its ethical norms. In standard RL formulations,

a drone’s action space Ad has single actions. However, in GUARDIAN, each CAS XSSd

(containing multiple actions) is a single action from the RL perspective that drone d

149

Algorithm 7 LSS : Least Status Set Algorithm for Drone d

Input: Status set SS , drone state Sd(t), norms Nd, denial constraints DC
Output: A status set SSd or ⊥
1: for each Oαd ∈ SS s.t. Pαd ̸∈ SS do
2: Add Pαd to SS
3: end for
4: for each Oαd ∈ SS s.t. Doαd ̸∈ SS do
5: Add Doαd to SS
6: end for
7: for each Doαd ∈ SS s.t. Pαd ̸∈ SS do
8: Add Pαd to SS
9: end for

10: if ∃αd: {Pαd,Fαd} ⊆ SS or Pαd ∈ SS with false preconditions then return ⊥
11: end if
12: if {αd | Doαd ∈ SS} violates DC then return ⊥
13: end if
14: SS ′

d := SS
15: repeat
16: SS ′′

d := SS ′
d

17: for each rule r : SAd ← χ&SAd,1& . . . in Nd do
18: if χ true in Sd(t) and {SAd,1, . . .} ⊆ SS ′

d then
19: Add SAd to SS ′

d; propagate O⇒ P,Do
20: if contradiction or constraint violation detected then return ⊥
21: end if
22: end if
23: end for
24: until SS ′

d = SS ′′
d return SS ′

d

Algorithm 8 Ethical Status Set Computation for Drone d

Input: HQ suggestions SSHQ , state Sd(t), norms Nd, constraints IC , AC , threshold τ
Output: Set of feasible status sets {SS d} or ⊥
1: DC ← denial constraints from AC
2: LSS d ← LSS(SSHQ , Sd(t),Nd,DC)
3: if LSS d = ⊥ then
4: LSSd ← LSS(∅, Sd(t),Nd,DC)
5: if LSSd = ⊥ then return ⊥ // No compliant actions exist
6: end if
7: end if
8: Identify forbidden/infeasible actions Ad

9: Build candidate sets by extending LSS d with permitted Do atoms
10: Enumerate up to τ feasible sets satisfying IC and AC return feasible status sets

150

chooses in the current state s. Formally,

(5.3) Ad(s) =
{
XSSd

| SS d ∈ Fd(s)
}
.

All status sets outside Fd(s) either violate ethical norms or feasibility. This masks out all

status sets that violate one or more DRs.

Pruning the Exponential Space. If there are |Ad| possible ground actions for drone d ,

then up to 2|Ad| CASs are theoretically possible. However, the definition of FSSs (Appen-

dix C.2) excludes most subsets, drastically shrinking the action space. We leverage the

feasible status set computation algorithm from our previous work (36) (detailed in Ap-

pendix C.2.6) to efficiently enumerate only ethically compliant action sets.. This ensures

that drone d only explores ethically valid CASs in its learning process.

5.4.1. Ethically/Legally-Guided MDPs

We now explain how GUARDIAN integrates feasible status sets into an RL framework

so that BLUE drones (and similarly, BLUE HQ) can learn optimal policies satisfying all

DRs. For simplicity, we focus on a single BLUE drone d — an analogous approach applies

to other BLUE drones. We also describe a hierarchical approach where the BLUE/RED

HQ operates at a higher strategic level to coordinate multiple drones.

BLUE drone d ’s Decision-making Problem can be framed within an MDP framework

as follows. We treat d as an RL agent with an MDP Md, subject to an action masking

mechanism that eliminates non-CASs.

5.4.1.1. MDP for Autonomous Drones. Each drone d uses an MDP:

Md =
(
Sd, Âd, Pd, Rd, γ

)
, where:

151

• States. Sd is the state space capturing drone d ’s observations. At time t, the

drone’s internal state is sd(t), which may include its position, health, resource

levels, partial observations of the environment, etc.

• Action Space. Âd is the masked action space given by Eq. (5.3). In each state

s, the available actions are exactly those CASs XSSd
that satisfy all DRs for d

at s.

• Transition Function. Pd

(
s,XSSd

, s′
)

is the probability of transitioning to state

s′ from state s when drone d executes all actions in XSSd
. This accounts for:

– Movement outcomes (e.g., boundary checks, success/failure probabilities).

– Firing success or engagement outcomes, e.g., being able to attack and elim-

inate a RED drone successfully.

– Concurrent effects of the environment (e.g., being attacked by an enemy

drone) as per (44).

• Reward Function. Rd(s,XSSd
) ∈ R is the immediate reward after executing the

CAS XSSd
. Unlike traditional single-action MDPs, the drone’s reward depends

on the combined effect of all αd ∈ XSSd
.

• Discount Factor. γ ∈ [0, 1] balances immediate and future rewards.

Concurrent-Action Rewards. We emphasize that Rd(s,XSSd
) reflects the outcome after

all actions in XSSd
have been applied concurrently. For instance, if d chooses to MoveTod

to a new location and FireAtDroned(d
′) simultaneously (assuming this satisfies the DRs),

the reward for that step will incorporate the success/failure of both moving and firing.

The reward formulation is discussed at Section 5.4.3 and Appendix C.2.7.

152

From our motivating example in Figure 5.1, consider drone B1 choosing between FSS-1

(fire at R1) and FSS-2 (move up). If B1 executes FSS-1 and eliminates R1: 1) B1 receives

a kill bonus. 2) B1 incurs an ammunition cost. 3) The team receives an additional bonus

for eliminating a threat.

If B1 instead executes FSS-2 (move up to cell (2, 3)): 1) B1 receives a survival bonus.

2) If this move brings B1 closer to the nearest enemy, B1 receives a movement incentive.

3) The team may incur future penalties if R1 subsequently destroys high-value cells.

The optimal policy balances immediate tactical gains against long-term strategic po-

sitioning, while ensuring all selected actions comply with ethical norms.

5.4.1.2. Policy Learning for Drones. A policy πd for drone d is a mapping from states

s ∈ Sd to probability distributions over CASs XSSd
∈ Âd(s). Formally:

πd : Sd → ∆
(
Âd(s)

)
,

where ∆(X) denotes the probability simplex over set X, i.e., the set of all probability

distributions over X. The goal is to find an optimal policy

π∗
d = argmax

πd

E
[∞∑
t=0

γt Rd

(
s(t), XSSd

(t)
)]
,

subject to the constraint that at each time t, the selected CAS XSSd
(t) ∈ Âd(s(t)) satisfies

the deontic rules expressing ethical constraints. Here, XSSd
(t) denotes the CAS chosen

at time t from the feasible status sets computed for state s(t). In practice, one can use

off-the-shelf RL algorithms (e.g., Q-learning, SARSA, policy gradient methods) (12) with

an action mask that eliminates CASs not in Âd(s).

153

In the state shown in Figure 5.1, drone B1’s policy πB1 assigns probabilities to each

feasible status set (FSS-1 through FSS-4). After training, the policy learns to assign

higher probability to FSS-1 (engage R1) when the expected reward from eliminating the

threat outweighs the risk of leaving other areas undefended. The policy also considers

coordination with other BLUE drones; if B2 is better positioned to engage R1, B1’s policy

may prefer FSS-2 (reposition) to cover another sector.

5.4.2. MDP for the Headquarters

The HQ operates at a higher level, coordinating multiple drones to achieve team-wide

objectives. Let Dk be the set of drones under HQ k’s command. The HQ has its own

MDP:

MHQ
k =

(
SHQ
k , AHQ

k , PHQ
k , RHQ

k , γ
)
.

HQ State. The state SHQ
k (t) aggregates information from all drones under HQ k’s

control. Specifically, BLUE HQ’s state includes:

• State of all BLUE drones.

• Observations from all CCTV cameras (positions and statuses of visible drones).

• Observed positions and public states of RED drones (within view range of any

BLUE drone).

• Current status of the grid (which cells have been destroyed, remaining city value).

HQ Actions. The HQ’s action space consists of suggesting actions to each drone:

AHQ
k (t) =

∏
d∈Dk

SuggestedActionk(d),

154

where SuggestedActionk(d) is an action that the HQ recommends drone d execute. The ac-

tual execution depends on the drone’s validation against its feasible status sets. PHQ
k

(
s, a, s′

)
captures the outcome of finally executed actions by the drones and RHQ

k (s, a) reflects team-

level outcome (e.g., total coverage of regions, elimination of enemy drones, discussed in

Appendix C.2.7).

Hence, the HQ performs three key functions:

(1) State Aggregation. The HQ collects observations from all drones and CCTVs.

Since individual drones have limited view ranges, the HQ provides a global picture

by combining all local observations.

(2) State Dissemination. The HQ shares relevant global information with drones.

When communication succeeds, drones receive updated global state. When com-

munication fails, drones rely on cached information.

(3) Action Coordination. Based on the global state, the HQ computes suggested

actions for each drone to maximize team-level objectives. For example in Fig-

ure 5.1, if both B1 and B2 can engage R1, the HQ might suggest B1 engage R1

while B2 repositions to cover R2, preventing redundant targeting.

Authority Overriding Drone Feasibility. HQs send suggested actions to drones; ethical

norms are encoded at the drone level, not the HQ level. Hence, we do not include ethical

norms for the HQs in this chapter. Each drone d must validate any suggestion from its

HQ against its feasible status sets using Algorithms 7 and 8 before execution. If an HQ-

suggested action conflicts with the BLUE drone’s DRs (e.g., explicitly fire over a civilian

area), then the drone will not take this action. Hence, even HQ-based policies cannot

force a drone to violate its ethical constraints.

155

5.4.3. Reward Functions

We define reward functions that incentivize BLUE drones to protect the city while penal-

izing resource expenditure and rewarding threat elimination. RED drones receive sym-

metric but opposing rewards. Let DBLUE(t) and DRED(t) denote the sets of alive BLUE

and RED drones at time t, respectively.

5.4.3.1. Notation.

• costd: Cost/value of drone d

• Bd(t): Battery remaining for drone d at time t

• pd(t): Payload (ammunition) remaining for drone d at time t

• vc(t): Value of cell c at time t (equivalently vi,j(t) for cell (i, j))

• killed(d, d′, t): True if drone d eliminates drone d′ at time t

• surv(d, t): True if drone d survives time step t

• fired(d, t): True if drone d fires at time t

• resp(d, c, t): True if drone d is responsible for protecting cell c at time t

• alive(c, t): True if cell c is alive (not destroyed) at time t

5.4.3.2. Reward Coefficients. The following coefficients balance different objectives:

• α: Weight for eliminating enemy drones (kill bonus)

• β: Weight for battery consumption (cost per time step)

• ζ: Weight for ammunition usage (cost per shot)

• δ: Weight for survival bonus

• ρ: Weight for protecting assigned cells

• ϕ: Weight for threat assessment (potential future damage)

156

5.4.3.3. Immediate Reward for BLUE Drone d.

rdt = α ·

 ∑
d′∈DRED(t)
killed(d,d′,t)

costd′

− β ·∆Bd(t)− ζ · fired(d, t) · κd

+ δ · surv(d, t) · σd + ρ ·

 ∑
c:resp(d,c,t)

alive(c, t) · vc(t)


− ϕ ·

∑
c′∈Cdanger(d′,t)

vc′(t) · Pattack(d
′, c′, t)

where:

• ∆Bd(t): Battery consumed by drone d during time step t

• κd: Ammunition cost coefficient for drone d

• σd: Survival bonus for drone d

• Cdanger(d
′, t): Set of cells that RED drone d′ can target given its current payload

pd′(t) and battery Bd′(t)

• Pattack(d
′, c′, t): Estimated probability that d′ attacks cell c′

157

5.4.3.4. Immediate Reward for RED Drone d′.

rd
′

t = α ·

 ∑
d∈DBLUE(t)
killed(d′,d,t)

costd

− β ·∆Bd′(t)(5.4)

− ζ · fired(d′, t) · κd′ + δ · surv(d′, t) · σd′

+ ρ ·

 ∑
c:resp(d′,c,t)

alive(c, t) · vc(t)


+ ϕ ·

∑
c′∈Cdanger(d′,t)

vc′(t) · Pattack(d
′, c′, t)

Note the sign difference in the final term: BLUE is penalized for threat exposure while

RED is rewarded.

5.4.3.5. Attack Probability Model. The probability that RED drone d′ attacks cell

c′ within its remaining operational time is:

Pattack(d
′, c′, t) = P0(d

′, c′, t) ·
(
1− e−µ·Bd′ (t)

)
where µ > 0 is an attack urgency parameter and P0(d

′, c′, t) is the base targeting

probability:

P0(d
′, c′, t) =

(
vc′ (t)

∥xd′ (t)−xc′∥+ε

)ξ

∑
c′′∈Cdanger(d′,t)

(
vc′′ (t)

∥xd′ (t)−xc′′∥+ε

)ξ

This softmax-style distribution favors cells that are high-value and close to the RED

drone. The parameter ξ (sharpness) controls selectivity, and ε prevents division by zero.

158

5.4.3.6. Team Reward. The team-level reward aggregates individual drone rewards:

RBLUE
t =

∑
d∈DBLUE(t)

rdt , RRED
t =

∑
d′∈DRED(t)

rd
′

t

5.4.4. Solving Ethically/Legally Guided MDPs

This section describes how computed FSSs (cf. Appendix C.2) are used in GUARDIAN

to learn optimal or near-optimal policies for both drones and Headquarters (HQs). By

integrating the masking of violating CASs directly into the RL process (117; 6), each

drone avoids violating ethical/legal norms. We adopt standard deep RL techniques for

distributed agents (e.g., Deep Independent Q-Learning (121) for drones) and a centralized-

coordination algorithm (QMIX (103)) for the Headquarters.

Independent Q-Learning for Drones. Each drone d applies Q-learning (or a deep

variant) over its masked action space. Recall from Equation (5.3) that:

Âd(s) =
{
XSSd

| SS d ∈ Fd(s)
}
.

In the Q-learning context, this masking condition ensures that during both exploration

(action sampling) and exploitation (greedy action selection), the Q-function only considers

actions from Âd(s). Specifically, actions outside this set receive a mask value of −∞ (or

a large negative value), effectively excluding them from consideration.

Let Qd(sd, X) denote drone d ’s Q-function, giving the expected discounted return for

taking CAS X in local state sd and thereafter following a greedy policy. Formally:

Qd(sd, X) = E
[
Rd(sd, X) + γ max

X′∈Âd(s
′
d)
Qd

(
s′d, X

′)],

159

where s′d is drone d ’s next local state after executing all actions in X. Note that the maxi-

mization is constrained to the masked action space Âd(s
′
d), ensuring ethical compliance in

future states as well. Standard temporal-difference updates can be applied (using replay

buffers and target networks, if using deep Q-learning (85; 121)) as long as the chosen CAS

X is always in Âd(s).

Algorithm 9 outlines the essential steps. Before selecting an action, drone d runs

Algorithm 8 to obtain Fd. The feasible status sets are then transformed into CASs

forming the masked action space Âd(s).

Algorithm 9 Drone d: Ethics-Guided Q-Learning Algorithm
Input: (1) Q-network Qd(s,X) with parameters θd, (2) discount factor γ, (3) learning

rate η, (4) exploration rate ϵ, (5) replay buffer B, (6) FSS enumeration threshold τ ,
(7) norms Nd, integrity constraints IC , action constraints AC .

1: for each episode or time step do
2: Observe current state sd(t)
3: Compute feasible status sets: Fd ← Algorithm 8

(
sd(t),Nd, IC ,AC , τ

)
4: if Fd = ⊥ then
5: Fallback: Execute no-op or safe maneuver; continue
6: end if
7: Masked actions: Âd(sd(t))← {XSSd

| SS d ∈ Fd}
8: With prob. ϵ: sample X uniformly from Âd(sd(t))
9: Otherwise: X = argmaxX′∈Âd(sd(t))

Qd(sd(t), X
′)

10: Execute X, observe reward rd (Section 5.4.3) and next state sd(t+ 1)
11: Store (sd(t), X, rd, sd(t+ 1)) in B
12: Update Q: Sample minibatch from B; for each (s,X, r, s′):

y = r + γ max
X′∈Âd(s

′
d)
Qd(s

′
d, X

′; θd),

L(θd) = (y −Qd(s,X; θd))
2

θd ← θd − η∇θdL(θd)

13: end for

Because Âd(s) contains only ethically compliant actions, the drone never attempts

forbidden maneuvers during training or execution.

160

QMIX for HQ Coordination. While individual drones learn local policies via

Independent Q-Learning, the HQ learns to coordinate these drones to maximize team-level

objectives. We adopt the QMIX (103), a widely used centralized training, decentralized

execution algorithm.

Mixing Network. In QMIX, each drone di maintains a local Q-function Qdi (as in

Appendix C.3.1), while the HQ learns a mixing network :

Qtot(s
HQ
k , a) = f

(
Qd1(sd1 , a1), . . . , Qdm(sdm , am); sHQ

k

)
,

where f(·) is trained to approximate the team-level Q-function.

Algorithm 10 HQ k: QMIX Coordination Algorithm
Input: (1) Mixing network parameters θ, (2) discount factor γ, (3) learning rate ηHQ, (4)

replay buffer BHQ, (5) monotonicity constraint on f(·).
1: for each episode or time step do
2: Observe HQ state sHQ

k (t)
3: for each drone di ∈ Dk do
4: Obtain local Q-values Qdi(sdi(t), ·)
5: end for
6: Compute Qtot(s

HQ
k (t),a) = f(Qd1 , . . . , Qdm ; s

HQ
k)

7: aHQ(t) = argmaxaQtot(s
HQ
k (t),a)

8: HQ suggests aHQ
i (t) to each drone di

9: Drone validation: Each di confirms or replaces aHQ
i (t) via FSS check

10: Execute final joint action a(t)

11: Observe team reward rk(t) and next state sHQ
k (t+ 1)

12: Store (sHQ
k (t),a(t), rk(t), s

HQ
k (t+ 1)) in BHQ

13: Train mixing network:

ytot = rk + γmax
a′

Qtot(s
HQ
k (t+ 1),a′; θ−)

LHQ(θ) = (ytot −Qtot(s
HQ
k (t),a(t); θ))2

θ ← θ − ηHQ∇θLHQ(θ)

14: end for

Motivating Example Setup. Consider step t in Figure 5.1:

161

(1) BLUE HQ aggregates state: observations from B1, B2, CCTV, grid values, etc.

(2) HQ queries local Q-values: QB1 ranks “engage R1” highest; QB2 ranks “move

toward R2” highest.

(3) HQ computes Qtot for joint actions. The joint action (B1 engages R1, B2 moves

toward R2) yields the highest Qtot.

(4) HQ sends suggestions to each drone.

(5) Each drone validates:

• B1: “engage R1” is in FSS-1 (feasible, since R1 is immediate threat). Ac-

cepted.

• B2: “move toward R2” is in FSS (movement permitted). Accepted.

(6) Actions execute: B1 fires at R1 (R1 eliminated), others move.

(7) Team reward computed: kill bonus for eliminating R1, survival bonuses, minus

ammunition cost.

(8) HQ updates mixing network with this experience.

This completes one step of coordinated, ethically-compliant decision making. Overall,

the design ensures ethical compliance is preserved. When the HQ selects drone actions,

it tries to pick (ad)d∈Dk
that jointly maximize Qtot. However, each drone d still enforces

its own feasibility mask. If the HQ suggests an infeasible CAS (e.g., a direct violation of

deontic rules), the drone’s CAS computation engine will reject it. Hence, the HQ cannot

force a drone to violate DRs. Rather, it focuses on coordinating feasible CASs across the

team to achieve higher-level goals. More details are shown in Appendix C.3.

162

5.4.5. RED: Non-Ethically-Guided Adversary

RED drones and HQ follow a standard MDP formulation structurally similar to BLUE.

However, RED operates as a non-learning adversarial baseline rather than a co-learning

adversary. Specifically, RED drones do not update policy parameters during training.

Instead, RED drones select actions from their physically valid action set at each time

step using either uniform random sampling or a hardcoded greedy policy that selects

reward-maximizing actions from the valid set (see Appendix C.2.7 for reward definitions).

Unlike BLUE, RED’s action space is not contrained through ethical norms. This design

models an adversary operating without ethical or legal restrictions, i.e., enabling destruc-

tion of city infrastructure and direct engagement of BLUE drones. The RED team also

operates with perfect communication, representing a worst-case adversarial assumption.

This asymmetry models adversaries who operate without legal or ethical restrictions while

providing a consistent and reproducible baseline for evaluating BLUE’s norm-compliant

policies.

5.5. Experimental Assessment

Our experiments are designed to assess the effectiveness of GUARDIAN, including

the cost of compliance with ethical/legal norms expressed in deontic logic. The detailed

assumptions of the GUARDIAN testbed are in Appendix C.4.

163

5.5.1. Setting

We simulated an urban environment via a 2-d N ×N grid with N ∈ {64, 128}. Each cell

was assigned an initial value vi,j(0), picked uniformly at random from [0, 100], represent-

ing the importance of city locations. All drones had initial battery capacity Bd(0) = 100

(depleted at 0.5 units per time step), view range rd = 5, fire range fd = 1, and initial

payload pd(0) = 3. |C1| = 3 CCTV cameras, with view range rc = 10, were placed at

random at the start of each episode, and their positions then remained fixed for the dura-

tion of that episode. The drones were trained using Deep Independent Q-Learning (121).

Each BLUE (resp., RED) drone maintained separate Q-value functions for the objectives

of protecting (resp., damaging) the city and ethical compliance (BLUE only). The HQs

(details in Appendix C.1.10) were trained using QMIX to learn coordinated strategies

that maximize team-level objectives. They utilize the individual Q-values of their drones

to compute a total Q-value for joint action selection.

The transition function Pd(s,X, s′) is deterministic: movement succeeds with proba-

bility 1 if the target cell is valid and unoccupied, and firing actions succeed with prob-

ability 1 if preconditions are satisfied. This deterministic setting isolates the effects of

deontic compliance from action uncertainty, following standard practice in multi-agent

RL benchmarks (107; 94). The only stochastic element is communication, modeled as a

Bernoulli random variable Cd(t) ∼ Bernoulli(pcomm) with pcomm = 0.8 for BLUE drones

and pcomm = 1.0 for RED drones. The 80% reliability for BLUE reflects realistic bat-

tlefield communication conditions under potential jamming (41), while RED’s perfect

communication represents a worst-case adversarial assumption. Details are provided in

Appendix C.1.12.

164

We varied the number |D1| of BLUE drones in {16, 32, 64} and the ratio of BLUE

to RED drones (B:R ratio) (i.e., |D1|
|D2|) in {1:1, 2:1, 3:1, 1:2, 1:3}. In some situations, the

defender may have more drones than the attacker (so the B:R ratio would exceed 1), but

in other situations, the B:R ratio may be either above or below 1. Let Nep = 5,000 denote

the number of training episodes. Each experiment was evaluated over Nep episodes.

5.5.2. Performance Metrics

We measured the main performance metrics outlined below (additional metrics are in

Appendix C.5).

• Reward. Cumulative reward accrued by BLUE drones during an episode.

• City Protection. Quantifies the effectiveness of BLUE in protecting the city.

We start by computing a “raw” protection value Praw =
∑

(i,j)∈N×N max(0,vi,j(final))∑
(i,j)∈N×N vi,j(0)

.

We then compute the theoretical minimum protection L = 1 − Dmax∑
(i,j)∈N×N vi,j(0)

achievable under the assumption that the RED team acts optimally (with perfect

coordination and no interference from the BLUE team). In the formula, Dmax

is the sum of the top-Pred cell values and Pred is the total payload of the RED

drones. The final city protection value is 1 if Praw ≥ 1, Praw−L
1−L

if L < Praw < 1,

and 0 if Praw ≤ L.

• Win Rate. Percentage of scenarios where BLUE neutralized all RED drones

before the scenario timed out.

• Threat Neutralization Steps. Number of steps taken to eliminate all enemy

threats.

165

5.5.3. Results

Reward values are shown in Figure 5.3. We made three observations.

(1) (Obs 1) As expected, compliance with DRs generally worsens performance.

(2) (Obs 2) Interestingly, on the 64x64 grid with 32 and 64 BLUE drones, compliance

with DRs appears to improve performance when RED drones are the majority

(1:2 and 1:3 ratios).

(3) (Obs 3) When the problem is larger (i.e., the grid size is larger or the number

of drones is larger), the reward when complying with DRs is closer to and then

larger than the value without DRs.

A possible explanation for (Obs 2,3) is that the deontic ethical/legal norms limit the

behavior of the BLUE drones, making the decision space smaller, compared to RED.

When the problem of learning the optimal strategy is relatively large for RED, these

deontic rules help the BLUE drones learn a strategy by reducing the decision space.

For the other performance metrics, in order to capture how compliance with DRs

affects performance, given a B:R drone ratio and a performance metric M such as those

defined above, we defined a compliance cost

CC(B:R,M) =
1

Nep

Nep∑
e=1

CC(B:R,M, e),

where CC(B:R,M, e) is the value of M in the compliance case (i.e., when the BLUE

drones comply with ethical norms) divided by the value of M in the no compliance case,

at episode e. The division by Nep averages the compliance cost over all episodes. Table 5.1

166

64x64 grid, 16 BLUE drones 64x64 grid, 32 BLUE drones 64x64 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

1000

800

600

400

200

0

200

400

600

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

1000

750

500

250

0

250

500

750

1000

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

1500

1000

500

0

500

1000

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

128x128 grid, 16 BLUE drones 128x128 grid, 32 BLUE drones 128x128 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

1000

750

500

250

0

250

500

750

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

1000

500

0

500

1000

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

2000

1500

1000

500

0

500

1000

1500

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

Figure 5.3. Reward to BLUE.

shows compliance costs for all B:R ratios when varying grid size and number of BLUE

drones. Detailed graphs similar to Figure 5.3 are shown in the Appendix.

City protection. Compliance with DRs appears to improve BLUE’s performance.

(Obs 4) Specifically compliance with DRs causes worse city protection in just 4 cases (up

to 14%), whereas in all other cases it improves protection (up to 20.9%).

Win rates show an interesting trend. (Obs 5) With 16 BLUE drones, compliance

with DRs worsens performance (up to 43.8%), but in the case of 32 or 64 BLUE drones,

performance appears to improve noticeably (up to 9.576 times). Again, as with (Obs 2,3)

this is likely because of the reduced decision space for BLUE. (Obs 6) In addition, when

RED drones are the majority, the BLUE team only wins in one case which should not be

a huge surprise.

167

City protection (higher is better)
16 BLUE drones 32 BLUE drones 64 BLUE drones
64x64 128x128 64x64 128x128 64x64 128x128

1:1 0.860 1.025 0.967 1.044 1.156 1.165
2:1 0.962 1.012 1.082 1.196 1.209 1.283
3:1 0.980 1.083 1.152 1.214 1.187 1.313
1:2 1.041 1.025 1.076 1.092 1.120 1.106
1:3 1.109 1.009 1.076 1.032 1.076 1.093

Win rate (higher is better)
16 BLUE drones 32 BLUE drones 64 BLUE drones
64x64 128x128 64x64 128x128 64x64 128x128

1:1 0.699 0.661 1.224 2.779 8.538 –
2:1 0.912 0.978 1.183 4.726 5.694 9.576
3:1 0.930 0.989 1.123 3.897 2.103 6.911
1:2 0.562 – – – – –
1:3 – – – – – –

Threat neutralization steps (lower is better)
16 BLUE drones 32 BLUE drones 64 BLUE drones
64x64 128x128 64x64 128x128 64x64 128x128

1:1 2.077 1.137 1.101 0.995 0.937 1.000
2:1 1.540 1.110 0.850 0.850 0.679 0.916
3:1 1.073 0.912 0.588 0.722 0.658 0.729
1:2 1.013 1.000 1.000 1.000 1.000 1.000
1:3 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.1. Compliance cost when varying B:R ratio, grid size, and number of BLUE drones.
Note that “–” means that BLUE did not win.

Threat neutralization steps. (Obs 7) As expected, in some cases, compliance with

DRs increases the number of threat neutralization steps. Still, in most cases, compliance

yields better performance.

Appendix C.6 reports charts with results obtained for each metric, B:R ratio, grid

size, and number of BLUE drones.

5.5.4. Impact of Norm Combinations

The experiments above use either the complete set of eight norms or no norms. To

understand how specific norm subsets contribute to system performance, we conducted

168

0 1000 2000 3000 4000 5000
Episode

300

200

100

0

100

200

300

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(a) 64×64 grid, 16 drones (1:1 ratio)

0 1000 2000 3000 4000 5000
Episode

400

300

200

100

0

100

200

300

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(b) 64×64 grid, 32 drones (1:1 ratio)

0 1000 2000 3000 4000 5000
Episode

400

200

0

200

400

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(c) 64×64 grid, 64 drones (1:1 ratio)

Figure 5.4. Test rewards across norm combinations in symmetric (1:1) competitive scenarios.
Lines represent mean performance with standard deviation bands.

additional experiments with norm sets of varying sizes: |N | ∈ {0, 2, 4, 6, 8}. Each combi-

nation was strategically selected to test specific hypotheses about norm interactions and

their operational impact. The experiments maintain a 1:1 BLUE-to-RED drone ratio

across all configurations for symmetric competitive scenario.

Figure 5.4 illustrates the results. Three patterns emerge (detailed in Appendix C.7):

(Obs 8) In sparse deployments (16 drones), no-norm configuration achieves highest re-

wards. (Obs 9) Partial norm sets consistently underperform both extremes. (Obs 10) As

drone density increases, complete norm sets achieve superior performance.

The transition occurs at approximately 32 drones. These results demonstrate that

norm completeness matters more than norm count. Hence, partial ethical frameworks

may perform worse than either complete frameworks or unconstrained operation.

5.5.5. Computation Time

We now report the runtime for some experiments which were conducted on a workstation

with an Intel® CoreTM i9-10980XE CPU (18 cores, 36 threads) running at 3.00GHz with

169

251GB RAM. Most tasks were performed on the CPU. Neural network training with

QMIX used the NVIDIA RTX A6000 GPU.

Training for 5,000 episodes with 64 blue drones on a 64×64 grid required about 630

(resp. 80) hours with (resp. without) DRs. This reflects the expected computational

overhead of reasoning with deontic constraints during the learning process.

Once trained offline, GUARDIAN is extremely practical during operations. Per-step

decision times for 25 episodes with a maximum of 200 steps per episode for each configu-

ration, on a 64x64 grid with 16, 32, and 64 drones and 1:1 drone ratio in milliseconds are

shown in Table 5.2.

BLUE drones Compliance CAS computation QMIX

16 Yes 215.576 ± 54.560 23.688 ± 42.256
No 0 15.344 ± 63.888

32 Yes 446.760 ± 131.920 26.216 ± 50.960
No 0 23.568 ± 63.848

64 Yes 554.856 ± 92.096 70.832 ± 31.520
No 0 41.616 ± 51.112

Table 5.2. Per-step decision time (milliseconds) on a 64x64 grid with 1:1 drone ratio.

When increasing the drone count from 16 to 64, GUARDIAN’s CAS computation

time grows by a factor of 2.6 (from 215.6ms to 554.9ms) and the neural network inference

time (QMIX) increases by a factor of 3 (from 23.7ms to 70.8ms)—both are less than

the 4x increase in drone count. Despite the additional computational requirements, the

total decision time with compliance remains well within acceptable bounds for real-time

autonomous control—even with 64 drones, the average decision time is 625.7ms, showing

GUARDIAN’s practical utility in real-world scenarios.

170

5.6. Limitations and Future Work

GUARDIAN operates on a 2D grid where drones move in four cardinal directions, and

the reported experiments use deterministic action outcomes with success probability 1.0.

While the testbed supports probabilistic transitions via uniform and normal distributions,

we have not evaluated GUARDIAN under stochastic action outcomes for operational

simplicity. Also, extending the framework to 3D environments with altitude variations and

altitude-dependent regulations, as well as assessing robustness under action uncertainty,

remain directions for future work. However, both cases will be computationally expensive.

Our current formulation models RED drones as a non-learning baseline. Extending

GUARDIAN to incorporate a co-learning adversary via self-play or minimax formulations

would enable analysis of how adversaries adapt their strategies over time based on observed

BLUE behavior, and how BLUE drones can develop countermeasures while maintaining

ethical compliance. We leave this adversarial co-evolution analysis to future work.

Current experiments assume homogeneous drone capabilities within each team. In

practice, defender and attacker fleets may comprise heterogeneous drones with varying

payload capacities, fire ranges, battery endurance, and maneuverability. The BLUE-to-

RED ratio in current experiments could serve as a proxy for capability asymmetries, but

explicit heterogeneous modeling would provide more realistic assessments.

While GUARDIAN ensures legal compliance through deontic logic constraints, the

learned policies remain black-box neural networks. Future work should investigate ex-

plainability methods that allow human operators to understand why specific actions were

selected and how norms influenced decisions. Similarly, models trained on 64×64 grids

cannot be directly applied to 128×128 or larger environments without retraining. Hence,

171

another future work can explore transfer learning mechanisms that enable models trained

on smaller grids to generalize to larger or differently configured environments, which would

reduce the computational burden of deployment in new cities.

5.7. Conclusions

Defense officials have been worried about the impact of ethical/legal norms on the

behavior of autonomous drones. Over the years, there has been concern that this ties

their hands, while the enemy’s hands are free. We describe GUARDIAN, a testbed for

experimenting with different ethical/legal norms in the context of autonomous, RL-based

drone swarms. Designed using input from security experts in the US, Netherlands, India,

and Israel, GUARDIAN expresses ethical/legal norms in deontic logic (44; 45; 53), and

combines it with RL.

Because ethical/legal norms vary from country to country and situation to situation,

the inputs we got from security experts may not be comprehensive. But they suffice

to demonstrate that GUARDIAN supports testing the impact of ethical/legal norms in

different settings. We present results showing that the imposition of legal/ethical norms

may not negatively tie the hands of the defender. Instead, when RED has more drones,

the deontic compliance rules may help the defender focus and be more efficient in finding

policies that both satisfy the required norms, and yield better reward.

172

CHAPTER 6

Future Directions and Conclusion

The components developed in this dissertation have been independently validated and

demonstrate the feasibility of responsible urban drone defense. The natural progression

of this research involves comprehensive integrated evaluation where these components

operate together within realistic operational scenarios. To initiate that frontier, we have

developed DUCK (Drone Urban Cyberdefense) (35), a high-fidelity 3D simulation testbed

described in this chapter. DUCK provides infrastructure for systematic evaluation of

multi-agent defensive strategies, exploration of emergent behaviors when multiple compo-

nents operate together, and assessment of integrated system performance under diverse

operational conditions. DUCK allows defenders to use CCTVs, Blue drones, and cyber

attacks to defend against swarms of Red drones. Defenders can simulate attacks and

assess their impact.

6.1. DUCK Implementation

The DUCK architecture (Figure 6.1) comprises over 10,100 lines of code in C++ and

Python. DUCK uses a customized 3D model based on the Unreal Engine and Microsoft’s

AirSim (109) simulator to visualize multiple drones in 3D environments, navigation, and

real-time drone state management. We extended AirSim to include CCTVs, drone-drone

attacks, destruction of regions, hacking, battery and payload constraints, and built high-

level Python APIs for these features. Key visualization, control, communications, and

173

Agent Program
with Deontic Logic

POSS Drone 1

POSS CCTV 1

POSS Red HQ

Actions

Drone, HQ, and CCTV
Behavior Constraints

Multi-Objective
Functions

Calculate Pareto-Optimal

Feasible Status Sets
POSS for each agent

DUCK ROS
Decision Layer

Maintain parallel

Action Execution

Queue for Agents

Event Driven
Controller

Ensure that all

Agents execute all

actions at timesteps

DUCK ROS
Control Layer

Control Agents

via internal PID

AirSim
API

AirSim
API

Translate calls to

3D Environment
Execute actions in
3D Environment

Fetch current state

of Env. and Agents

DUCK ROS
Visualization Layer

Use API to visualize

different properties

State Metadata

Top-view
2D Map

Red HQ
View

Figure 6.1. Simplified DUCK Testbed Architecture for a single execution cycle (timestep).

concurrency aspects were built within the Robot Operating System (ROS) connected to

AirSim.

The ROS component implements DUCK’s decision, control, and visualization layers.

Each layer has separate nodes running in parallel for message communications. The

decision layer identifies actions each agent decides to perform at time t by finding a

Pareto-optimal set of actions compatible with that agent’s program. Not all attempted

actions succeed. The control layer injects stochasticity into agent actions and determines

which attempted actions succeed. For example, a blue drone bd may fire at red drone rd,

but ROS may determine that rd is not destroyed. The visualization layer displays ground

truth, attempted actions, objective values, camera images from agents, and real-time

movement on maps.

6.2. DUCK Capabilities

The DUCK demo1 allows a user to set the number and capabilities (e.g. payload,

firing range, battery) of the blue and red drones, and the number of CCTVs. Figure 6.2

1Available at: https://sites.northwestern.edu/nsail/projects/duck

https://sites.northwestern.edu/nsail/projects/duck

174

Figure 6.2. DUCK 3-Screen Demonstration. The middle screen visualizes GT. Left and right
screens show other technical details.

shows the demonstration on 3 screens shortly after launching. The demonstration allows

users to configure the number and capabilities of blue and red drones (payload, firing

range, battery) and the number of CCTVs. The system provides multiple synchronized

visualization screens. One screen shows Red HQ’s view of drone cameras and displays how

objective function values change as the simulation proceeds. Another screen shows ground

truth in the 3D environment, depicting multi-drone engagements. A third screen shows

Blue HQ’s view of drone cameras and CCTV feeds, and visualizes drone state information

including GPS coordinates, battery, payload, hack status, and operational status. The

interface enables event-driven simulation where users can step through discrete timesteps.

DUCK allows defenders to simulate attacks on urban regions and assess efficacy of

diverse defenses including drone deployments and cyber attacks, thereby computing how

to minimize damage under cost constraints. The testbed supports systematic evaluation

of defensive strategies across varying team compositions, operational constraints, and

adversarial tactics. It can generate photorealistic data for sim2real training (37; 100; 99).

6.3. Limitations and Future Directions

While this dissertation advances autonomous, compliant urban drone defense, several

limitations remain.

175

Transfer Learning Across Environments. GUARDIAN models trained on 64×64 grids

cannot be applied to 128×128 or larger environments without retraining. While feasible

status set computation remains valid regardless of grid size, the Q-learning components

require retraining for different environments. Developing transfer learning mechanisms

that enable models trained on smaller grids to generalize to larger configurations would

reduce the computational burden of deployment.

Scalability via Graph Coarsening. Prior work on Stackelberg security games for drone

defense (86) introduced delta-coarsening as a scalability mechanism. Given a large city

graph, the algorithm compresses the city into neighborhoods, solves sub-games within

each neighborhood, and expands solutions back to the original scale. Integrating delta-

coarsening with GUARDIAN could enable deployment to cities of arbitrary size: partition

a large city into neighborhoods, train policies for each neighborhood configuration, coordi-

nate neighborhood-level defenses through hierarchical command, and use the coarsening-

expansion process to map policies to full-scale operations.

Geographic Scope of STATE. STATE has been evaluated only in The Hague with an-

notations from Dutch police experts. Extension to multiple cities with different urban

layouts, regulatory environments, and cultural contexts is necessary to establish general-

izability.

Intent-Based Classification. Current threat classification of DEWS operates as binary

(threatening/non-threatening) without modeling attacker intent. The Dutch police ex-

perts provided intent annotations explaining why trajectories were classified as threaten-

ing, but this information has not been incorporated into classification models. Leveraging

176

intent data could enable threat assessment that distinguishes reconnaissance, surveillance,

delivery, and attack trajectories.

Heterogeneous Drone Capabilities. GUARDIAN experiments assume homogeneous

drone capabilities within each team. In practice, fleets may comprise drones with varying

payload capacities, fire ranges, battery endurance, and maneuverability. The Blue-to-

Red ratio could serve as a proxy for capability asymmetries, but explicit heterogeneous

modeling would provide more realistic assessments.

Model Interpretability. While GUARDIAN ensures legal compliance through deontic

logic constraints, the learned policies remain black-box neural networks. The responsibil-

ity framework addresses legal and ethical compliance with governance requirements, but

does not provide explanations for specific decisions. Future work should investigate ex-

plainability methods that allow operators to understand why specific actions were selected

and how norms influenced decisions.

Training Overhead. Training with deontic compliance in GUARDIAN requires approx-

imately 630 hours compared to 80 hours without compliance for equivalent configurations.

While inference times remain practical (under 700ms per decision), the training overhead

presents barriers to rapid iteration and deployment in new environments.

Dual-Use Considerations. The STATE model for generating threatening trajectories

presents dual-use concerns: the capability that enables defenders to anticipate attacks

could assist adversaries in planning trajectories. State actors with significant computa-

tional resources pose different considerations than non-state actors with limited capabili-

ties. Responsible deployment requires access controls and monitoring of model usage.

177

6.4. Conclusion

This dissertation has addressed the critical challenge of enabling proactive, legally

compliant defense of populated regions from hostile drone activities. The work has devel-

oped four complementary frameworks: DEWS for early threat prediction from minimal

trajectory observations, STATE for generating synthetic training data addressing data

scarcity, POSS for legally compliant multi-objective decision-making, and GUARDIAN

for reinforcement learning under hard constraints. Each contribution has been indepen-

dently validated, demonstrating that responsible urban drone defense requires simulta-

neous attention to technical effectiveness, legal compliance, and empirical rigor. The

ongoing DUCK testbed provides infrastructure for future integrated evaluation of these

components within realistic operational scenarios.

The path forward involves transitioning from component-level validation to compre-

hensive integration, from simplified testbed environments to high-fidelity simulation, and

ultimately to operational deployment. The technical challenges of achieving robustness

against sophisticated adversaries and generalizing across diverse operational contexts re-

main substantial. However, this research establishes that threats can be identified early

enough to enable meaningful response, data scarcity can be addressed through principled

synthetic generation, legal constraints can be formalized and integrated into automated

reasoning, and adaptive learning can proceed under normative boundaries. The vision of

defensive systems that are simultaneously effective, compliant, adaptive, and transparent

is achievable through rigorous interdisciplinary inquiry, and this dissertation represents

meaningful progress toward that goal.

178

References

[1] Ajith, V., and Jolly, K. Unmanned aerial systems in search and rescue applica-
tions with their path planning: a review. In Journal of Physics: Conference Series
(2021), vol. 2115, IOP Publishing, p. 012020.

[2] Alferes, J. J., Banti, F., and Brogi, A. An event-condition-action logic
programming language. In JELIA Conference (2006).

[3] Almohammad, A., and Speckhard, A. Isis drones: Evolution, leadership,
bases, operations and logistics. The International Center for the Study of Violent
Extremism 5 (2017).

[4] Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., and
Topcu, U. Safe reinforcement learning via shielding. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence (2018), pp. 2669–2678.

[5] Balkan, S. A global battlefield? rising drone capabilities of non-state armed
groups and terrorist organizations. Tech. rep., 2019.

[6] Banerjee, I., Honnappa, H., and Rao, V. Off-line estimation of controlled
markov chains: Minimaxity and sample complexity. Operations Research (2025).

[7] Banerjee, I., Rao, V., and Honnappa, H. Adaptive estimation of the transition
density of controlled markov chains. arXiv preprint arXiv:2505.14458 (2025).

[8] Barua, L., Zou, B., and Zhou, Y. Machine learning for international freight
transportation management: A comprehensive review. Research in Transportation
Business & Management 34 (2020), 100453.

[9] Becker, S., Hug, R., Hübner, W., Arens, M., and Morris, B. T. Generating
synthetic training data for deep learning-based UAV trajectory prediction. CoRR
abs/2107.00422 (2021).

[10] Bell, C., Nerode, A., Ng, R. T., and Subrahmanian, V. Implementing
deductive databases by linear programming. In PODS (1992).

[11] Bell, C., Nerode, A., Ng, R. T., and Subrahmanian, V. Mixed integer
programming methods for computing nonmonotonic deductive databases. J. ACM
41, 6 (1994), 1178–1215.

[12] Bertsekas, D. Reinforcement learning and optimal control, vol. 1. Athena Scien-
tific, 2019.

[13] Best, K. L., Schmid, J., Tierney, S., Awan, J., Beyene, N. M., Holliday,
M. A., Khan, R., and Lee, K. How to Analyze the Cyber Threat from Drones:
Background, Analysis Frameworks, and Analysis Tools. RAND Corporation, Santa

179

Monica, CA, 2020.
[14] Bharilya, V., and Kumar, N. Machine learning for autonomous vehicle’s trajec-

tory prediction: A comprehensive survey, challenges, and future research directions.
Vehicular Communications (2024), 100733.

[15] Bloom, D. C-uas in urban environments: Challenges and opportunities. D-Fend
Solutions Blog (March 20, 2024), 2024. Describes dense urban terrain providing
cover and complicating counter-drone operations.

[16] Bolonkin, M., Chakrabarty, S., Molinaro, C., and Subrahmanian, V.
Judicial support tool: Finding the k most likely judicial worlds. In International
Conference on Scalable Uncertainty Management (2024), Springer, pp. 53–69.

[17] Bonatti, R., Wang, W., Ho, C., Ahuja, A., Gschwindt, M., Camci, E.,
Kayacan, E., Choudhury, S., and Scherer, S. Autonomous aerial cinematog-
raphy in unstructured environments with learned artistic decision-making. Journal
of Field Robotics 37, 4 (2020), 606–641.

[18] Boukoberine, M. N., Zhou, Z., and Benbouzid, M. A critical review on un-
manned aerial vehicles power supply and energy management: Solutions, strategies,
and prospects. Applied Energy 255 (2019), 113823.

[19] Brandes, U. A faster algorithm for betweenness centrality. Journal of mathemat-
ical sociology 25, 2 (2001), 163–177.

[20] Brinkmeier, M. Pagerank revisited. ACM Trans. Internet Techn. 6, 3 (2006),
282–301.

[21] Cai, Y., Zhang, H., Su, H., Zhang, J., and He, Q. The bipartite edge-based
event-triggered output tracking of heterogeneous linear multiagent systems. IEEE
Trans. Cybern. 53, 2 (2023), 967–978.

[22] Calegari, R., Ciatto, G., Mascardi, V., and Omicini, A. Logic-based
technologies for multi-agent systems: Summary of a systematic literature review. In
AAMAS Conference (2021).

[23] Chandru, V., and Hooker, J. N. Extended Horn Sets In Propositional Logic.
J. ACM 38, 1 (1991), 205–221.

[24] Cheikh, M., Jarboui, B., Loukil, T., and Siarry, P. A method for selecting
pareto optimal solutions in multiobjective optimization. Journal of Informatics and
mathematical sciences 2, 1 (2010), 51–62.

[25] Chen, F., Wang, X., Zhao, Y., Lv, S., and Niu, X. Visual object tracking: A
survey. Computer Vision and Image Understanding 222 (2022), 103508.

[26] Chen, J., and Sayed, A. H. Distributed pareto optimization via diffusion strate-
gies. IEEE J. Sel. Top. Signal Process. 7, 2 (2013), 205–220.

[27] Chen, X., Du, Y., Xia, L., and Wang, J. Reinforcement recommendation with
user multi-aspect preference. In WWW Conference (2021).

[28] Clocksin, W. F., and Mellish, C. S. Programming in PROLOG. Springer
Science & Business Media, 2003.

[29] Coello, C. A. C. Evolutionary algorithms for solving multi-objective problems.

180

Springer, 2007.
[30] Costantini, S., and Tocchio, A. A logic programming language for multi-agent

systems. In JELIA Conference (2002).
[31] De Cubber, G. Explosive drones: How to deal with this new threat? In Proceed-

ings of the 2019 International Workshop on Countering Unmanned Aerial Systems
(Brussels, Belgium, 2019).

[32] de Wit, V., Doder, D., Meyer, J. J., et al. Probabilistic deontic logics for
reasoning about uncertain norms. Journal of Applied Logics 2631, 2 (2023), 193.

[33] Deb, K., and Jain, H. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18, 4 (2014), 577–601.

[34] Deb, T., de Laaf, S., La Gatta, V., Lemmens, O., Lindelauf, R., van
Meerten, M., Meerveld, H., Neeleman, A., Postiglione, M., and Sub-
rahmanian, V. A drone early warning system (dews) for predicting threatening
trajectories. IEEE Intelligent Systems (2025), 1–10.

[35] Deb, T., Dix, J., Jeong, M., Molinaro, C., Pugliese, A., Li, A. Q.,
Santos Jr, E., Subrahmanian, V., Yang, S., and Zhang, Y. Duck: A
drone-urban cyber-defense framework based on pareto-optimal deontic logic agents.
In Proceedings of the AAAI Conference on Artificial Intelligence (2023), vol. 37,
pp. 16425–16427.

[36] Deb, T., Jeong, M., Molinaro, C., Pugliese, A., Li, A. Q., Santos, E.,
Subrahmanian, V., and Zhang, Y. Declarative logic-based pareto-optimal agent
decision making. IEEE Transactions on Cybernetics (2024).

[37] Deb, T., Rahmun, M., Bijoy, S. A., Raha, M. H., and Khan, M. A. Uuct-
hymp: Towards tracking dispersed crowd groups from uavs. In 2021 International
Joint Conference on Neural Networks (IJCNN) (2021), IEEE, pp. 1–8.

[38] Dhariwal, P., and Nichol, A. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems (2021), vol. 34, pp. 8780–8794.

[39] Dikmen, M., and Burns, C. M. Autonomous driving in the real world: Experi-
ences with tesla autopilot and summon. In AutomotiveUI Conference (2016).

[40] Drew, T., and Gini, M. Implantable medical devices as agents and part of
multiagent systems. In AAMAS Conference (2006).

[41] Du, Z., Wu, C., Yoshinaga, T., Yau, K.-L. A., Ji, Y., and Li, J. Machine
learning for large-scale optimization in 6g wireless networks. IEICE Transactions
on Communications 103, 6 (2020), 678–689.

[42] Egeland, K. Lethal autonomous weapon systems under international humanitar-
ian law. Nordic Journal of International Law 85, 2 (2016), 89–118.

[43] Ehrgott, M. Multicriteria Optimization. Springer, 2005.
[44] Eiter, T., Subrahmanian, V., and Pick, G. Heterogeneous active agents, i:

Semantics. Artificial Intelligence 108, 1-2 (1999), 179–255.
[45] Eiter, T., Subrahmanian, V., and Rogers, T. J. Heterogeneous active agents,

181

iii: Polynomially implementable agents. Artificial Intelligence 117, 1 (2000), 107–
167.

[46] European Union Aviation Safety Agency. Drone incident management at
aerodromes. Tech. rep., EASA, Cologne, Germany, 2021. Noting that a consumer
drone can penetrate 5 km of protected airspace in under 4 minutes.

[47] Federal Aviation Administration. Operation and certification of small un-
manned aircraft systems (part 107). Federal Register Rule 81 FR 42063, 2016. U.S.
domestic drone regulation outlining operational restrictions and requirements.

[48] Føllesdal, D., and Hilpinen, R. Deontic logic: An introduction. In Deontic
logic: Introductory and systematic readings, vol. 33. Springer, 1971, pp. 1–35.

[49] Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L., Garcia-
Rodriguez, A., and Yuan, J. Survey on uav cellular communications: Practical
aspects, standardization advancements, regulation, and security challenges. IEEE
Communications Surveys & Tutorials 21, 4 (2019), 3417–3442.

[50] Gabbay, D. M., Horty, J. F., Parent, X., van der Meyden, R., and
van der Torre, L. The Handbook of Deontic Logic and Normative Systems.
College Publications, 2021.

[51] Gambs, S., Killijian, M.-O., and del Prado Cortez, M. N. Next place
prediction using mobility markov chains. In Proceedings of the first workshop on
measurement, privacy, and mobility (2012), pp. 1–6.

[52] Georgiou, H., Karagiorgou, S., Kontoulis, Y., Pelekis, N., Petrou,
P., Scarlatti, D., and Theodoridis, Y. Moving objects analytics: Survey on
future location & trajectory prediction methods. arXiv preprint arXiv:1807.04639
(2018).

[53] Governatori, G., Rotolo, A., Sartor, G., Gabbay, D., Horty, J., Par-
ent, X., van der Meyden, R., and van der Torre, L. Logic and the law:
philosophical foundations, deontics, and defeasible reasoning. Handbook of Deontic
Logic and Normative Reasoning 2 (2021), 655–760.

[54] Hao, Y., Liu, L., and Feng, G. Event-triggered cooperative output regulation of
heterogeneous multiagent systems under switching directed topologies. IEEE Trans.
Cybern. 53, 2 (2023), 1026–1038.

[55] Hjelmblom, M., and Odelstad, J. jDALMAS: A java/prolog framework for
deontic action-logic multi-agent systems. In KES-AMSTA Symposium (2009).

[56] Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems (2020), vol. 33, pp. 6840–6851.

[57] Hoenig, M. Hezbollah and the use of drones as a weapon of terrorism. Public
Interest Report 67, 2 (2014).

[58] Huang, D., Song, X., Fan, Z., Jiang, R., Shibasaki, R., Zhang, Y., Wang,
H., and Kato, Y. A variational autoencoder based generative model of urban
human mobility. In 2019 IEEE conference on multimedia information processing
and retrieval (MIPR) (2019), IEEE, pp. 425–430.

182

[59] Hughes, M., and Hess, J. An assessment of lone wolves using explosive-laden
consumer drones in the united states. Global Security and Intelligence Studies 2, 1
(2016), 62–84.

[60] International Institute of Humanitarian Law, Ed. The San Remo Hand-
book on Rules of Engagement. IIHL, Sanremo, Italy, 2009. Establishes that ROE
must align with international law and domestic legal parameters.

[61] Jin, K., Han, S., Baek, D., and Lee, H. L. Small drone detection using hybrid
beamforming 24 ghz fully integrated cmos radar. Drones 9, 7 (2025), 453.

[62] Julka, S., Sowrirajan, V., Schloetterer, J., and Granitzer, M. Con-
ditional generative adversarial networks for speed control in trajectory simulation.
In Machine Learning, Optimization, and Data Science (Cham, 2022), G. Nicosia,
V. Ojha, E. La Malfa, G. La Malfa, G. Jansen, P. M. Pardalos, G. Giuffrida, and
R. Umeton, Eds., Springer International Publishing, pp. 436–450.

[63] Kahagalage, S. D., Turan, H. H., Jalalvand, F., and Sawah, S. E. A novel
graph-theoretical clustering approach to find a reduced set with extreme solutions of
pareto optimal solutions for multi-objective optimization problems. J. Glob. Optim.
86, 2 (2023), 467–494.

[64] Kim, J.-H., and Kum, D.-S. Threat prediction algorithm based on local path
candidates and surrounding vehicle trajectory predictions for automated driving
vehicles. In 2015 IEEE Intelligent Vehicles Symposium (IV) (2015), IEEE, pp. 1220–
1225.

[65] Kulkarni, V., Moro, A., and Garbinato, B. Mobidict: A mobility prediction
system leveraging realtime location data streams. In Proceedings of the 7th ACM
SIGSPATIAL International Workshop on GeoStreaming (2016), pp. 1–10.

[66] Lee, D., Kim, H., Choi, Y., and Kim, J. Development of autonomous operation
agent for normal and emergency situations in nuclear power plants. In ICSRS
Conference (2021).

[67] Liang, J. J., Qiao, K., Yu, K., Qu, B., Yue, C., Guo, W., and Wang,
L. Utilizing the relationship between unconstrained and constrained pareto fronts
for constrained multiobjective optimization. IEEE Trans. Cybern. 53, 6 (2023),
3873–3886.

[68] Lin, L., Li, W., Bi, H., and Qin, L. Vehicle trajectory prediction using lstms with
spatial–temporal attention mechanisms. IEEE Intelligent Transportation Systems
Magazine 14, 2 (2021), 197–208.

[69] Lindahl, L., and Odelstad, J. Normative positions within an algebraic approach
to normative systems. Journal of Applied Logic 2, 1 (2004), 63–91.

[70] Liu, Y., Zhu, N., and Li, M. Solving many-objective optimization problems by a
pareto-based evolutionary algorithm with preprocessing and a penalty mechanism.
IEEE Trans. Cybern. 51, 11 (2021), 5585–5594.

[71] Liu, Z., An, P., Yang, Y., Qiu, S., Liu, Q., and Xu, X. Vision-based drone
detection in complex environments: A survey. Drones 8, 11 (2024), 643.

183

[72] Lloyd, J. W. Foundations of logic programming. Springer Science & Business
Media, 2012.

[73] Luca, M., Barlacchi, G., Lepri, B., and Pappalardo, L. A survey on deep
learning for human mobility. ACM Computing Surveys (CSUR) 55, 1 (2021), 1–44.

[74] Ma, L., Huang, M., Yang, S., Wang, R., and Wang, X. An adaptive localized
decision variable analysis approach to large-scale multiobjective and many-objective
optimization. IEEE Trans. Cybern. 52, 7 (2022), 6684–6696.

[75] Ma, L., Li, N., Guo, Y., Wang, X., Yang, S., Huang, M., and Zhang,
H. Learning to optimize: Reference vector reinforcement learning adaption to con-
strained many-objective optimization of industrial copper burdening system. IEEE
Trans. Cybern. 52, 12 (2022), 12698–12711.

[76] Macrina, G., Di Puglia Pugliese, L., Guerriero, F., and Laporte, G.
Drone-aided routing: A literature review. Transportation Research Part C: Emerg-
ing Technologies 120 (2020), 102762.

[77] Malakooti, B., and Raman, V. Clustering and selection of multiple criteria
alternatives using unsupervised and supervised neural networks. J. Intell. Manuf.
11 (2000), 435–453.

[78] Malakooti, B., and Yang, Z. Clustering and group selection of multiple crite-
ria alternatives with application to space-based networks. IEEE Trans. Syst. Man
Cybern. Part B 34, 1 (2004), 40–51.

[79] Mally, E. Grundgesetze des sollens: Elemente der logik des willens. In Logische
Schriften: Großes Logikfragment, Grundgesetze des Sollens, K. Wolf and P. Wein-
gartner, Eds. D. Reidel, Dordrecht, 1926, pp. 227–324. Reprint of the original edition
published in Graz by Leuschner und Lubensky, Universitäts-Buchhandlung.

[80] McKnight, P. E., and Najab, J. Mann-whitney u test. The Corsini encyclopedia
of psychology (2010), 1–1.

[81] Meng, C., Todo, Y., Tang, C., Luan, L., and Tang, Z. Dpfsi: A legal
judgment prediction method based on deontic logic prompt and fusion of law article
statistical information. Expert Systems with Applications 272 (2025), 126722.

[82] Menéndez, M., Pardo, J., Pardo, L., and Pardo, M. The jensen-shannon
divergence. Journal of the Franklin Institute 334, 2 (1997), 307–318.

[83] Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., and Nashashibi, F.
Attention based vehicle trajectory prediction. IEEE Transactions on Intelligent
Vehicles 6, 1 (2020), 175–185.

[84] Mirza, M., and Osindero, S. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014).

[85] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,
G., et al. Human-level control through deep reinforcement learning. nature 518,
7540 (2015), 529–533.

[86] Mutzari, D., Deb, T., Molinaro, C., Pugliese, A., Subrahmanian, V.,

184

and Kraus, S. Defending a city from multi-drone attacks: A sequential stackelberg
security games approach. Artificial Intelligence 349 (2025), 104425.

[87] Neufeld, E. A., Bartocci, E., and Ciabattoni, A. On normative reinforce-
ment learning via safe reinforcement learning. In International Conference on Prin-
ciples and Practice of Multi-Agent Systems (2022), Springer, pp. 72–89.

[88] Neufeld, E. A., Bartocci, E., Ciabattoni, A., and Governatori, G. En-
forcing ethical goals over reinforcement-learning policies. Ethics and Information
Technology 24, 4 (2022), 43.

[89] Olivieri, F., Governatori, G., Cristani, M., Rotolo, A., and Sattar, A.
Deontic meta-rules. Journal of Logic and Computation 34, 2 (2024), 261–314.

[90] Olszewski, M., Parent, X., and Van der Torre, L. Permissive and regulative
norms in deontic logic. Journal of Logic and Computation (2023), exad024.

[91] Ozer, M., Keles, I., Toroslu, I. H., and Karagoz, P. Predicting the change
of location of mobile phone users. In Proceedings of the Second ACM SIGSPATIAL
International Workshop on Mobile Geographic Information Systems (2013), pp. 43–
50.

[92] Ozer, M., Keles, I., Toroslu, İ. H., Karagoz, P., and Ergut, S. Predicting
the next location change and time of change for mobile phone users. In proceed-
ings of the third ACM SIGSPATIAL international workshop on mobile geographic
information systems (2014), pp. 51–59.

[93] Pang, Y., and Liu, Y. Conditional generative adversarial networks (cgan) for
aircraft trajectory prediction considering weather effects. In AIAA Scitech 2020
Forum (2020), p. 1853.

[94] Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht, S. V. Bench-
marking multi-agent deep reinforcement learning algorithms in cooperative tasks.
arXiv preprint arXiv:2006.07869 (2021).

[95] Pardalos, P. M., Migdalas, A., and Pitsoulis, L. Pareto optimality, game
theory and equilibria, vol. 17. Springer Science & Business Media, 2008.

[96] Pledger, T. The role of drones in future terrorist attacks. Association of the
United States Army (2021).

[97] Poibrenski, A., Klusch, M., Vozniak, I., and Müller, C. M2p3: multi-
modal multi-pedestrian path prediction by self-driving cars with egocentric vision.
In Proceedings of the 35th Annual ACM Symposium on Applied Computing (2020),
pp. 190–197.

[98] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal,
S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and
Sutskever, I. Learning transferable visual models from natural language super-
vision. CoRR abs/2103.00020 (2021).

[99] Raha, M. H., Deb, T., Rahmun, M., Bijoy, S. A., Firoze, A., and Khan,
M. A. Cae: Towards crowd anarchism exploration. In 2020 19th IEEE International

185

Conference on Machine Learning and Applications (ICMLA) (2020), IEEE, pp. 559–
564.

[100] Rahmun, M., Deb, T., Bijoy, S. A., and Raha, M. H. Uav-crowd: Violent
and non-violent crowd activity simulator from the perspective of uav. arXiv preprint
arXiv:2208.06702 (2022).

[101] Raivi, A. M., Huda, S. A., Alam, M. M., and Moh, S. Drone routing for drone-
based delivery systems: A review of trajectory planning, charging, and security.
Sensors 23, 3 (2023), 1463.

[102] Rao, J., Gao, S., Kang, Y., and Huang, Q. Lstm-trajgan: A deep learning
approach to trajectory privacy protection. arXiv preprint arXiv:2006.10521 (2020).

[103] Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J.,
and Whiteson, S. Monotonic value function factorisation for deep multi-agent
reinforcement learning. The Journal of Machine Learning Research 21, 1 (2020),
7234–7284.

[104] Ren, Y., Lan, Z., Liu, L., and Yu, H. Emsin: enhanced multi-stream interaction
network for vehicle trajectory prediction. IEEE Transactions on Fuzzy Systems
(2024).

[105] Rönnedal, D. An introduction to deontic logic. CreateSpace Independent Pub-
lishing Platform, 2010.

[106] Rossiter, A. Drone usage by militant groups: exploring variation in adoption.
Defense & Security Analysis 34, 2 (2018), 113–126.

[107] Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G., Nardelli, N.,
Rudner, T. G., Hung, C.-M., Torr, P. H., Foerster, J., and Whiteson,
S. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019).

[108] ŞEN, O., and AKARSLAN, H. Terrorist use of unmanned aerial vehicles:
Turkey’s example. Defence Against Terrorism Review 13 (2020).

[109] Shah, S., Dey, D., Lovett, C., and Kapoor, A. Airsim: High-fidelity visual
and physical simulation for autonomous vehicles. In Field and Service Robotics
(2018), Springer, pp. 621–635.

[110] Shea-Blymyer, C., and Abbas, H. Generating deontic obligations from utility-
maximizing systems. In Proceedings of the 2022 AAAI/ACM Conference on AI,
Ethics, and Society (2022), pp. 653–663.

[111] Shea-Blymyer, C., and Abbas, H. Formal ethical obligations in reinforcement
learning agents: Verification and policy updates. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society (2024), vol. 7, pp. 1368–1378.

[112] Shi, H., Wang, M., and Wang, C. Leader-follower formation learning control
of discrete-time nonlinear multiagent systems. IEEE Trans. Cybern. 53, 2 (2023),
1184–1194.

[113] Shi, Z., Xu, M., Pan, Q., Yan, B., and Zhang, H. Lstm-based flight trajectory
prediction. In 2018 International joint conference on neural networks (IJCNN)
(2018), IEEE, pp. 1–8.

186

[114] Shukla, P., Shukla, S., and Singh, A. K. Trajectory-prediction techniques for
unmanned aerial vehicles (uavs): A comprehensive survey. IEEE Communications
Surveys & Tutorials (2024).

[115] Sims, A. The rising drone threat from terrorists. Geo. J. Int’l Aff. 19 (2018), 97.
[116] Stroe, B., Subrahmanian, V., and Dasgupta, S. Optimal status sets of

heterogeneous agent programs. In AAMAS Conference (2005).
[117] Su, Z., Banerjee, I., and Klabjan, D. Central limit theorems for transition

probabilities of controlled markov chains. arXiv preprint arXiv:2508.01517 (2025).
[118] Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ross, R.,

Ozcan, F., and Dix, J. Heterogeneous agent systems. MIT press, 2000.
[119] Sutton, R. S., Barto, A. G., et al. Reinforcement learning: An introduction,

vol. 1. MIT press Cambridge, 1998.
[120] Taboada, H. A., Baheranwala, F., Coit, D. W., and Wat-

tanapongsakorn, N. Practical solutions for multi-objective optimization: An
application to system reliability design problems. Reliability Engineering & System
Safety 92, 3 (2007), 314–322.

[121] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru,
J., Aru, J., and Vicente, R. Multiagent cooperation and competition with deep
reinforcement learning. PloS one 12, 4 (2017), e0172395.

[122] Tedeschi, P., Nuaimi, F. A. A., Awad, A. I., and Natalizio, E. Privacy-
aware remote identification for unmanned aerial vehicles: Current solutions, po-
tential threats, and future directions. IEEE Trans. Ind. Informatics 20, 2 (2024),
1069–1080.

[123] Tedeschi, P., Sciancalepore, S., and Pietro, R. D. PPCA - privacy-
preserving collision avoidance for autonomous unmanned aerial vehicles. IEEE
Trans. Dependable Secur. Comput. 20, 2 (2023), 1541–1558.

[124] Thompson, M., Tarr, A. A., Tarr, J.-A., and Ritterband, S. Unmanned
aerial vehicles: Liability and insurance. In The Global Insurance Market and Change.
Informa Law from Routledge, 2024, pp. 212–245.

[125] Ullah, F., Sepasgozar, S. M., and Wang, C. A systematic review of smart
real estate technology: Drivers of, and barriers to, the use of digital disruptive
technologies and online platforms. Sustainability 10, 9 (2018), 3142.

[126] Vogel, R. J. Drone warfare and the law of armed conflict. Denv. J. Int’l L. &
Pol’y 39 (2010), 101.

[127] Wan, L., Yuan, J., and Wei, L. Pareto optimization scheduling with two com-
peting agents to minimize the number of tardy jobs and the maximum cost. Applied
Mathematics and Computation 273 (2016), 912–923.

[128] Wang, F.-Y. Agent-based control for networked traffic management systems. IEEE
Intelligent Systems 20, 5 (2005), 92–96.

[129] Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image

187

Processing 13, 4 (2004), 600–612.
[130] Wang, Z., Simoncelli, E., and Bovik, A. Multiscale structural similarity for

image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,
Systems Computers, 2003 (2003), vol. 2, pp. 1398–1402 Vol.2.

[131] World Economic Forum. Advanced drone operations: Regulatory challenges
and opportunities in cities. WEF Insight Report, 2019. Noting fragmented drone
regulations across jurisdictions and lagging legal frameworks.

[132] Wu, C.-W., Shieh, M.-D., Lien, J.-J. J., Yang, J.-F., Chu, W.-T., Huang,
T.-H., Hsieh, H.-C., Chiu, H.-T., Tu, K.-C., Chen, Y.-T., Lin, S.-Y., Hu,
J.-J., Lin, C.-H., and Jheng, C.-S. Enhancing fan engagement in a 5g stadium
with ai-based technologies and live streaming. IEEE Systems Journal 16, 4 (2022),
6590–6601.

[133] Yang, W.-C., Marra, G., Rens, G., and De Raedt, L. Safe reinforcement
learning via probabilistic logic shields. In Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelligence (2023), pp. 5739–5749.

[134] Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan: Sequence generative adver-
sarial nets with policy gradient. In Proceedings of the AAAI conference on artificial
intelligence (2017), vol. 31.

[135] Zeng, W., Chu, X., Xu, Z., Liu, Y., and Quan, Z. Aircraft 4d trajectory
prediction in civil aviation: A review. Aerospace 9, 2 (2022), 91.

[136] Zhang, Q., and Li, H. MOEA/D: A multiobjective evolutionary algorithm based
on decomposition. IEEE Trans. Evol. Comput. 11, 6 (2007), 712–731.

[137] Zhang, Y., Yuan, J., Ng, C. T., and Cheng, T. C. E. Pareto-optimization
of three-agent scheduling to minimize the total weighted completion time, weighted
number of tardy jobs, and total weighted late work. Naval Research Logistics 68, 3
(2021), 378–393.

[138] Zheng, O., Abdel-Aty, M., Yue, L., Abdelraouf, A., Wang, Z., and Mah-
moud, N. Citysim: A drone-based vehicle trajectory dataset for safety-oriented
research and digital twins. Transportation Research Record 2678, 4 (2024), 606–621.

[139] Zhou, S., Yang, L., Liu, X., and Wang, L. Learning short-term spa-
tial–temporal dependency for uav 2-d trajectory forecasting. IEEE Sensors Journal
24, 22 (2024), 38256–38269.

[140] Zhu, T., Ye, X., Feng, C., Zhang, Y., Huang, Y., Xu, T., and Chen, E. Diff-
rntraj: A structure-aware diffusion model for road network-constrained trajectory
generation. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (2024), pp. 4395–4406.

188

APPENDIX A

A Drone Early Warning System (DEWS) for Predicting

Threatening Trajectories

DEWS Features. For each trajectory t, DEWS captures the following types of features.

It is important to note that the data used by DEWS was captured in real-time by the

Dutch police using third party tools to monitor drone communications. Thus, all of the

features listed below are available at or before the time of a flight. Details (including

units) are provided in Tables A.1 and A.2.

Basic Features. These include the number of observations, the duration of the flight,

the distance traveled, and the communication channel used (e.g. radio-frequency, wifi).

Drone Capability Features. These include the weight, dimensions, max payload, max

ascent speed, max descent speed, max horizontal speed, max takeoff altitude, max flight

time, max hovering time, max flight distance, max windspeed resistance, max pitch angle,

and battery.

Asset Features. Asset features assign values to different parts of a city being protected.

They were assigned to regions of the city by Dutch police officers in advance. The fea-

tures listed here can be extracted using the pre-specified city values and the given drone

trajectory. These include the maximum value of assets on the ground that the drone has

flown over as well as features depending on the distributions of asset values around each

point in the trajectory.

189

1 60 180 360 720
time threshold (s)

0.75

0.80

0.85

0.90

pr
ec

isi
on

1 5 10 20 30

0.75

0.80

0.85

0.90

(a)

1 60 180 360 720
time threshold (s)

0.75

0.80

0.85

0.90

re
ca

ll

1 5 10 20 30

0.75

0.80

0.85

(b)

1 60 180 360 720
time threshold (s)

0.65

0.70

0.75

0.80

0.85

0.90

f1

1 5 10 20 30
0.65
0.70
0.75
0.80
0.85

(c)

Figure A.1. Low-Threat Prediction (LTP) settings: Precision (a), Recall (b), and F1-score (c)
metrics are shown as functions of varying temporal restrictions on the trajectories. The top row
provides a zoomed-in view of the results for shorter time windows (less than 30 seconds), while
the bottom row displays the complete range of observation windows.

Altitude Features. These include the altitude at both the start and end of the drone’s

trajectory, the mean altitude throughout the trajectory, the standard deviation of the

altitude, and additional metrics based on the distribution of altitude values along the

trajectory.

No-fly Zone Features. No-fly Zone features are based on areas within the city where

drone flight is restricted. These features include indicators of whether the drone entered

a no-fly zone, the percentage of trajectory points within such zones, and features repre-

senting the distance from the drone to the nearest no-fly zone.

Speed Features. These include the speed of the drone at both the start and end of its

trajectory, the mean speed throughout the trajectory, the standard deviation of the speed,

and additional metrics based on the distribution of speed values along the trajectory.

Observation History Features. These include the distance between the current tra-

jectory and the closest (and past) trajectories from the same drone (self-similarity) or

190

1 60 180 360 720
time threshold (s)

0.75

0.80

0.85

0.90

0.95

pr
ec

isi
on

1 5 10 20 30
0.75

0.80

0.85

0.90

0.95

(a)

1 60 180 360 720
time threshold (s)

0.65

0.70

0.75

0.80

0.85

0.90

re
ca

ll

1 5 10 20 30

0.65

0.70

0.75

(b)

1 60 180 360 720
time threshold (s)

0.65

0.70

0.75

0.80

0.85

0.90

f1

1 5 10 20 30

0.70

0.75

0.80

(c)

Figure A.2. Medium-Threat Prediction (MTP) settings: Precision (a), Recall (b), and F1-score
(c) metrics are shown as functions of varying temporal restrictions on the trajectories. The top
row provides a zoomed-in view of the results for shorter time windows (less than 30 seconds),
while the bottom row displays the complete range of observation windows.

other observed drones (cross-similarity), as well as the threat scores associated with these

trajectories.

Early Threat Prediction Evaluation. Figure A.1 illustrates the performance of DEWSunder

the Low-Threat Prediction (LTP) setting, while Figure A.2 presents the results for the

Medium-Threat Prediction (MTP) setting. For both threat levels, the evaluation metrics

— precision, recall, and F1-score — are assessed across different observation windows.

In the LTP scenario, late fusion demonstrates superior performance compared to the

11 classifiers evaluated, achieving high precision, recall, and F1-score across various ob-

servation windows. Due to the lower complexity of this setting, high performance is

observed early in the trajectories, with the F1-score exceeding 0.85 after just a 10-second

observation window.

In the MTP scenario, the performance of DEWS exhibits a similar pattern, with

late fusion consistently yielding better results. Precision and recall metrics suggest a

191

Category Attribute Description
Basic n_records The total number of recorded data points within the given trajectory.

duration The duration (in seconds) from the start to the end of the recorded
drone trajectory

distance The Haversine distance (in km) traveled by the drone during the
recorded trajectory

communication channel The type of communication channel used by the drone (e.g., Radio
Frequency, Wi-Fi, cellular).

Weight The total weight of the drone in grams (g).
L, w, h The drone’s physical dimensions—length (L), width (w), and height (h)

in millimeters (mm).
Capabilities MaxPayload The maximum payload capacity the drone can carry, measured in grams

(g). It is the weight the drone can safely lift in addition to its own
weight.

MaximumAscentSpeed The highest speed at which the drone can ascend, measured in meters
per second (m/s).

MaximumDescentSpeed The highest speed at which the drone can descend, measured in meters
per second (m/s).

MaximumHorizontalSpeed The maximum speed at which the drone can travel horizontally, mea-
sured in meters per second (m/s).

MaxTakeoffAltitude The maximum altitude above sea level from which the drone can take
off, measured in meters (m).

MaxFlightTime The maximum duration the drone can stay airborne on a single battery
charge, measured in minutes (min).

MaxHoveringTime The maximum time the drone can hover in place, measured in minutes
(min).

MaxFlightDistance The maximum distance the drone can travel on a single battery charge,
measured in kilometers (km).

MaxWindSpeedResistance The highest wind speed that the drone can withstand while maintaining
stable flight, measured in meters per second (m/s).

MaxPitchAngle The maximum angle at which the drone can tilt forward or backward,
measured in degrees (°).

Battery The battery capacity of the drone, measured in milliampere-hours
(mAh).

Assets av_max The maximum value of assets on the ground that the drone has flown
over.

av_rh_bk The proportion of asset values within the h-th radius from each point
of the drone’s trajectory, distributed across nbin bins. Each av_rh_bk
represents the relative frequency of asset values in the k-th bin. In
our experiments, nbin = 10, h ∈ {50, 250, 1000} (meters), and k ∈
{1, 2, . . . , nbin}.

av_rh_mean The mean of asset values within the h-meter radius around each point
of the drone’s trajectory. h ∈ {50, 250, 1000} (meters).

av_rh_std The standard deviation of asset values within the h-meter radius around
each point of the drone’s trajectory. h ∈ {50, 250, 1000} (meters).

Table A.1. DEWS Features categories and descriptions (Part 1).

192

well-calibrated system, with precision reaching approximately 0.95 after a 10-second ob-

servation window. Nonetheless, recall is considerably lower compared to the LTP setting,

reflecting the increased challenge of identifying threatening trajectories in this more com-

plex scenario.

193

Category Attribute Description
Altitude h_start The altitude at the beginning of the drone’s trajectory, measured as

the height above the take-off point.
h_end The altitude at the end of the drone’s trajectory, measured as the height

above the take-off point.
h_mean The mean altitude throughout the drone’s trajectory, measured as the

average height above the take-off point.
h_std The standard deviation of the altitude throughout the drone’s trajec-

tory.
h_bk The proportion of altitude values within each of the nbin bins along

the drone’s trajectory. Each h_bk represents the relative frequency of
altitude values in the k-th bin. In our experiments, nbin = 10 and
k ∈ {1, 2, . . . , nbin}.

No-fly Zones enter_noflyzone A boolean value indicating whether the drone entered any no-fly zones
during its trajectory.

perc_noflyzone The percentage of records (points in the trajectory) where the drone
was in a no-fly zone.

nf_d_min The minimum distance from the drone to the nearest no-fly zone during
its trajectory.

nf_d_max The maximum distance from the drone to the nearest no-fly zone during
its trajectory.

nf_d_mean The average distance from the drone to the nearest no-fly zone during
its trajectory.

nf_d_std The standard deviation of distances from the drone to the nearest no-
fly zone during its trajectory.

Speed sp_start The speed of the drone at the start of the trajectory, measured in
kilometers per hour (km/h).

sp_end The speed of the drone at the end of the trajectory, measured in kilo-
meters per hour (km/h).

sp_mean The average speed of the drone during the trajectory, calculated as the
mean of the speeds between consecutive points.

sp_std The standard deviation of the drone’s speed over the recorded trajec-
tory.

sp_bk The proportion of speed values that fall into each of the nbin bins. Each
sp_bk represents the relative frequency of speeds in the k-th bin. In
our experiments, nbin = 10 and k ∈ {1, 2, . . . , nbin}.

Observation History self_sim_ki The distance between the current trajectory and the i-th closest (and
past) trajectory from the same drone, based on a specified distance met-
ric. In our experiments, we use cosine similarity and i ∈ {1, 2, . . . , k}.

self_threat_ki The threat score associated with the i-th closest trajectory from the
same drone.

cross_sim_ki The distance between the current trajectory and the i-th closest
(and past) trajectory from different drones, based on a specified dis-
tance metric. In our experiments, we use cosine similarity and i ∈
{1, 2, . . . , k}.

cross_threat_ki The threat score associated with the i-th closest trajectory from other
drones.

Table A.2. DEWS Features categories and descriptions (Part 2).

194

APPENDIX B

Declarative Logic-based Pareto-Optimal

Agent Decision Making

B.1. Proofs

Proof of pro:closure-complexity. In the following, the worst-case time complexity is

always understood. Lines 1–4 can be executed as follows: the status atoms in SS are sorted

by their action α, and then the resulting sorted list is scanned checking the condition of

the for each loops for each traversed element—checking such a condition for a single

element can now be done in constant time, since there is a constant number of status

atoms with the same action. Assuming that the addition of a new element to SS takes

constant time (e.g., using a list), the overall time taken by lines 1–4 is O(|SS | · lg |SS |).

The same reasoning applies to lines 5–6, even though the updated set SS needs to be

traversed, whose cardinality is at most three times the cardinality of the original set SS ,

and thus the overall time taken by lines 5–6 is O(|SS | · lg |SS |) too.

On line 7, condition (i) can be checked in O(|SS | · lg |SS |) time (again, by first sorting

SS as discussed above), while condition (ii) can be checked in O(|SS | · |St|) time (here we

are considering the size of Pre(α) to be a constant, as the set of actions is fixed). Line 8

takes constant time.

Line 9 takes O(|SS | · ||DC ||) time. Lines 10–11 take constant time.

195

We now consider lines 12–26, which consist of two nested loops. The number of times

lines 15–25 are executed is O(|A| · gP), because the outer loop can make at most |A|

iterations, and the inner loop clearly makes gP iterations. Let us focus on the complexity

of lines 15–25 (when executed once). Line 15 takes constant time. Line 16 takes O(χP ·

|St|+bP · |SS ′|) time. Lines 17–21 take constant time (again, here we consider an addition

to SS ′ to take constant time). On line 22, condition (i) can be checked in O(|SS ′| · lg |SS ′|)

time, while condition (ii) can be checked in O(|SS ′| · |St|) time. Line 23 takes constant

time. Line 24 takes O(|SS ′|·||DC ||) time. Line 25 takes constant time. So, the overall time

complexity of lines 12–26 is O(|A|·gP ·(χP ·|St|+bP ·|SS ′|+|SS ′|·lg |SS ′|+|SS ′|·|St|+|SS ′|·

||DC ||)), which can be rewritten as O(|A|·gP ·(χP ·|St|+|SS ′|·(bP+lg |SS ′|+|St|+||DC ||))).

Notice that |SS ′| is O(|A|). Thus, the overall time complexity of lines 12–26 can be

rewritten as O(|A| · gP · (χP · |St|+ |A| · (bP + lg |A|+ |St|+ ||DC ||))).

Line 27 takes constant time.

From the analysis above, the worst-case time complexity of poss:alg:closure is O(|A| ·

gP · (χP · |St|+ |A| · (bP + lg |A|+ |St|+ ||DC ||))). 2

Proof of th:baseline-complexity. In the following, the worst-case time complexity is

always understood. The worst-case time complexity of line 2 is as per pro:closure-

complexity. Lines 3–4 take constant time. Lines 5–7 take O(|A| · (|St| + gP)) time,

since the cardinality of LSS is O(gP). Notice that |SA| is O(|A|). Line 8 takes con-

stant time. Checking whether a status set SS is feasible as per def:feasibleSS takes

O(|SS |·lg |SS |+|SS |·|St|+gP ·(|St|·χP+|SS |·bP)+|SS |·||AC ||+|St|·||IC ||+fconc(|SS |, |St|))

time. Lines 9–11 take O(2|A| · (|A| · lg |A|+ |A| · |St|+gP · (|St| ·χP + |A| · bP)+ |A| · ||AC ||+

196

|St| · ||IC || + fconc(|A|, |St|))) time, since, for any status set SS s.t. LSS ⊆ SS ⊆ SA, we

have |SS | = O(|A|). Lines 12–13 take constant time. Lines 14–15 take O(22|A| · fOF (|A|)).

From the analysis above, the overall (worst-case) time complexity of poss:alg:poss-naive

is O(|A|2 · gP · ||DC ||+ 22|A| · fOF (A) + 2|A| · (|A| · lg |A|+ |A| · |St|+ gP · (|St| · χP + |A| ·

bP) + |A| · ||AC ||+ |St| · ||IC ||+ fconc(|A|, |St|))), where |A|2 · gP · ||DC || is the part of the

complexity of poss:alg:closure (see line 2) that is not dominated by the complexity of the

rest of poss:alg:poss-naive. 2

197

APPENDIX C

GUARDIAN: Governance-Unified Aerial Reinforcement-Defense

In Accordance with Norms

C.1. Structure of GUARDIAN

We now provide the formal underpinnings of GUARDIAN.

C.1.1. Drones

Each drone operates within the M ×N city grid G.

C.1.1.1. Static Properties. Each drone d possesses inherent static properties that de-

fine its capabilities:

• Drone ID (idd): A unique identifier assigned from N.

• Team ID (teamd): Indicates team affiliation. We denote BLUE team as teamd =

1 and RED team as teamd = 2.

• View Range (rd): A positive integer rd ∈ N defining the radius within which

the drone can observe its surroundings.

• Fire Range (fd): A positive integer fd ∈ N specifying the maximum distance at

which the drone can hit a target.

• Cost (costd): cost of the drone.

C.1.1.2. Dynamic Properties. Each drone d has different dynamic properties, that is,

the property values change over time.

198

• Position (xd(t)): Current location on the grid at time t with xd(t) ∈ G. In

other words, we unify the row and column notation, so xd(t) indicates the 2D

cell location.

• Battery (Bd(t)): Remaining battery at time t, with Bd(t) ≥ 0. The drone

is considered non-operational if Bd(t) = 0. This property is dynamic and may

decrease over time (we assume no recharging).

• Payload (pd(t)): Remaining ammunition at time t, with pd(t) ≥ 0. We assume

payload is also non-increasing over time (no reloads).

• Reward (Rd(t)): Accumulated reward up to time t, with Rd(t) ∈ R.

199

C.1.2. State Space of Drones

Actual State Sd(t) contains all internal and external attributes of drone d at time t,

including confidential information not observable by other agents (drones or CCTV cam-

eras). The drone sends this information to the HQ directly. We define:

Sd(t) =



idd

teamd

rd

fd

costd

xd(t)

Bd(t)

pd(t)

Rd(t)



.

Public State Spublic
d (t) includes only the attributes that are externally observable by

other agents, excluding any confidential or internal information. The public state of

drone d at time t is:

200

Spublic
d (t) =



idd

teamd

costd

Bd(t)

pd(t)

xd(t)


.

C.1.3. Observation Space of Drones

Drone d observes other drones and cameras within its view range rd. The set of neighboring

entities (drones or CCTV cameras) at time t is:

Nd(t) = {b | b ̸= d, ∥xd(t)− xb(t)∥ ≤ rd} ,

where ∥ · ∥ is a distance metric, which stays consistent over time.

The drone’s observation at time t is:

(C.1) Od(t) =
{
Spublic
b (t) | b ∈ Nd(t)

}
where Spublic

b (t) includes publicly observable information about agent b. In other words,

the drone can observe all publicly available state of drones or CCTVs within its view

range—the public state of CCTV cameras will be defined in the following.

C.1.4. Action Space

The set of possible actions for drone d at time t, denoted Ad(t), includes:

201

• Movement Actions:

– Move Up: MoveTod(up)

– Move Down: MoveTod(down)

– Move Left: MoveTod(left)

– Move Right: MoveTod(right)

The drone moves one cell in the specified direction.

• Fire at drone: FireAtDroned(d
′), where d′ is a drone within fire range fd.

• Fire at CCTV: FireAtCCTV d(c), where c is a CCTV within fire range fd.

• Fire at Cell: FireAtCelld, which attempts to destroy the cell (setting its value

to zero) currently occupied by the drone.

• No Operation: NoOpd

The outcome of firing actions, whether at drones or CCTV cameras or cells, is determined

probabilistically, drawn from predefined distributions. Various distributions for modeling

these probabilistic outcomes are supported by our testbed.

C.1.5. Preconditions of Actions

To execute an action, the corresponding preconditions must be met:

Movement Preconditions. Moving to cell i, j requires:

• (i, j) ∈ G (within grid bounds).

• Target cell is vacant: no agent occupies (i, j).

Fire at Target Preconditions. Firing at target b (drone or CCTV camera) requires:

• Target within fire range: ∥xd(t)− xb(t)∥ ≤ fd.

• Sufficient payload: pd(t) > 0.

202

Fire at Cell Preconditions.

• Drone d is in cell (i, j) to be destroyed: xd(t) = (i, j).

• Sufficient payload: pd(t) > 0.

C.1.6. State Transitions

The following are the drone state updates based on actions:

• Movement: xd(t+ 1) = (i, j) where (i, j) is the new location of the drone after

performing a move action.

• Firing at Agent b:
pd(t+ 1) = pd(t)− 1,

Bb(t+ 1) = Bb(t)− 1

where the target drone’s battery

decreases by 1, indicating damage.

• Firing at Cell:
pd(t+ 1) = pd(t)− 1,

vi,j(t+ 1) = 0

where (i, j) = xd(t) (cell destroyed).

Action Outcome Distribution. The testbed supports stochastic action outcomes through

three configurable modes:

(1) Deterministic: All actions succeed with probability p = 1.

(2) Uniform stochastic: Success probability p = 0.5, determined by sampling

U ∼ Uniform(0, 1) and succeeding if U > 0.5.

(3) Normal stochastic: Success probability p = 0.5, determined by sampling Z ∼

N (0, 1) and succeeding if Z > 0.

All experiments reported in this chapter use the deterministic mode (p = 1), ensuring the

state transitions defined above occur with certainty.

203

C.1.7. CCTV Cameras

CCTV cameras are stationary agents deployed by the BLUE Team to monitor the city

grid G.

C.1.7.1. Static Properties. Each CCTV camera c has:

• CCTV ID (idc): Unique identifier from N.

• Team ID (teamc): All CCTV cameras belong to the BLUE team, i.e., teamc = 1.

• Position (xc): Fixed at xc ∈ G.

• View Range (rc): A positive integer rc ∈ N.

• Cost (costc): cost of the camera.

Dynamic Properties. At time t, a CCTV camera c can be either

• alive, which holds if vxc(t) > 0 (in which case we set alivec(t) to true), or

• destroyed, which holds otherwise (in which case alivec(t) is false).

C.1.8. State Space of CCTVs

Actual State of a CCTV camera c at time t is defined as:

Sc(t) =



idc

teamc

xc

rc

costc

alivec(t)


.

204

The public state of a CCTV camera c at time t is:

Spublic
c (t) =



idc

teamc

xc

costc

alivec(t)


.

Here, the view range rc is the only non-shared confidential information, hence is not a

part of the public state.

C.1.9. Observation Space of CCTVs

Like drones, the observations of a CCTV camera c are based on view range rc, so we

define the set of neighboring agents of c at time t as:

Nc(t) = {b | ∥xc − xb(t)∥ ≤ rc} ,

and c’s observation at time t as:

Oc(t) =
{
Spublic
b (t) | b ∈ Nc(t)

}
.

205

C.1.10. Autonomous Headquarters (HQ)

In GUARDIAN, the HQ of each team is responsible for overseeing the deployment and

operations of its drones and, for the BLUE Team, CCTV cameras. By leveraging these

resources, HQs play a critical role in decision-making The HQ interacts with its agents

and the environment to achieve the team’s objectives: maximizing damage (RED Team)

or minimizing damage (BLUE Team). In summary, the HQ’s responsibilities include:

• Strategic Decision-Making: Formulating strategies to achieve team objec-

tives, such as defending key areas or maximizing damage.

• Resource Management: Allocating resources like drones and payloads effi-

ciently.

• Drone Coordination: Assigning actions to drones, monitoring drone status,

and integrating observations.

C.1.10.1. Static Properties. Each team k has a Headquarters (HQ), where k = 1 de-

notes BLUE and k = 2 denotes RED. The HQ is defined by the following static properties:

• Team ID (teamk): Team identifier, where teamk = k.

• Number of Drones (Dk): The initial number of drones deployed by the team,

where Dk ≥ 1

• Number of CCTV Cameras (Ck): The number of CCTV cameras deployed

by team k. Only BLUE deploys cameras, so C1 ≥ 0 and C2 = 0.

C.1.10.2. Dynamic Properties. At each time t, the HQ’s dynamic properties evolve

based on interactions with agents and the environment:

206

• Team Reward (Rk(t)): The cumulative reward accrued by the team up to time

t, Rk(t) ∈ R

• Set of Drones (Dk(t)): The collection of drones controlled by the HQ that are

operational at time t.

• Set of CCTV Cameras (Ck(t)): The collection of operational CCTV cameras

at time t. For RED, C2(t) = ∅.

C.1.10.3. Observation Space. Each HQ aggregates observations from its drones and

CCTV cameras to form a comprehensive view of the environment:

OHQ
k (t) =

⋃
n∈Dk(t)∪Ck(t)

On(t)

where:

• Dk(t) ∪ Ck(t): The set of all drones and CCTV cameras belonging to team k at

time t.

• On(t): The observation received from entity n at time t, where n is either a drone

or a CCTV camera.

C.1.10.4. State Space. The state of the Headquarters at time t is represented by:

(C.2) SHQ
k (t) =


OHQ

k (t)

{Sd(t)}d∈Dk(t)

{Sc(t)}c∈Ck(t)


where Sd(t) and Sc(t) are the state of drone and CCTV camera at time t, as previously

defined.

207

C.1.11. Action Space

The HQ’s action space only involves assigning actions to drones. For each drone d ∈ Dk(t),

at time t the HQ selects an action ad(t) from the drone’s action space Ad(t).

C.1.12. Modeling Communication Consistency

Communication between drones and their HQ occurs at each time step but may experience

random failures. We model communication success using a Bernoulli random variable:

(C.3) Cd(t) ∼ Bernoulli(pcomm)

where Cd(t) = 1 indicates successful communication and Cd(t) = 0 indicates failure. The

parameter pcomm represents communication reliability. When Cd(t) = 1, communication

is consistent, and the drone receives the action from the HQ. When Cd(t) = 0, communi-

cation fails, and the drone does not receive any action from the HQ or send information

to the HQ.

C.2. Incorporating Ethical/Legal Norms in GUARDIAN Framework

C.2.1. State Representation: Atoms and Predicates

We define a set of predicate symbols to represent the environment’s state and drone d ’s

possible actions. Note: The essential predicates used in the deontic rules are defined in

Section 5.3.2. This section provides the complete list of all predicates used in GUARDIAN

for reference.

C.2.1.1. Predicates for Drones.

208

• blue(d): Drone d is on the BLUE (defending) Team.

• red(d): Drone d is on the RED (attacking) Team.

• position(d, i, j, t): Drone d is located in cell (i, j) at time t.

• InFireRange(d, d′): Drone d′ is within the firing range of drone d.

• HasPayload(d): Drone d still has nonzero ammunition.

• ImmediateThreat(d′): If the observed state of drone d′ on the opposing team

contains Bd′ > 0 and pd′ > 0, then drone d′ is deemed an immediate threat. This

is determined from publicly observable state information.

• SameTeam(d, d′): Drone d′ is on the same team as drone d.

• killed(d, d′, t): True if drone d′ is eliminated by drone d at time t.

• surv(d, t): True if drone d survives time step t.

• resp(d, c, t): True if drone d is responsible for protecting cell c at time t.

• fired(d, t): True if drone d fires at time t.

C.2.1.2. Predicates for HQ.

• AssignedAction(d, a, t): At time t, the BLUE HQ has assigned action a to drone

d.

• CommConsistent(d, t): Communication between drone d and the HQ is function-

ing properly at time t (no packet loss or jamming).

C.2.1.3. Predicates for Environments.

• Adjacent(i, j, p, q): Cell (p, q) is orthogonally adjacent (up, down, left, right) to

cell (i, j), i.e., the four cardinal neighbors of (i, j) are (i−1, j), (i+1, j), (i, j−1), and

209

(i, j+1) whenever they lie within the grid bounds. Formally, (|i−p|+ |j−q| = 1)

and 1 ≤ p ≤M , 1 ≤ q ≤ N 1.

• Utility(i, j, u, t): Cell (i, j) has utility u at time t, i.e. u = vi,j(t).

• CivilianArea(i, j): Cell (i, j) is known to be a protected civilian region. BLUE

drones must be extremely cautious about firing here.

• alive(c, t): True if cell c (or the grid cell containing CCTV c) has not been

destroyed by time t, i.e., vc(t) > 0.

C.2.1.4. Predicates for Derived Utility. Certain norms below compare the utility of

one cell against another. We introduce two parameters λ and λ′, where 1 < λ < λ′. They

determine how we compare the neighboring cells’ utilities to vi,j(t).

Intuitively:

• λ is a moderate threshold (e.g., 1.2 or 1.3). If all neighbors are ≥ λ× vi,j(t), or if

a neighbor is ≥ λ′ × vi,j(t), then the risk of letting the RED drone move is high.

• λ′ is a higher threshold (e.g., 2.0). Even if some neighbors are only moderately

above vi,j(t), we become very concerned if at least one neighbor exceeds λ′×vi,j(t).

We define:

• HasLowerUtilityNeighbor(i, j, t, λ): Cell (i, j) at time t has at least one neighbor

with strictly lower utility, and no neighbor exceeds λ× vi,j(t):

∃(p, q) : Adjacent(i, j, p, q) ∧ vp,q(t) < vi,j(t),

∀(p′, q′) : Adjacent(i, j, p′, q′)⇒ vp′,q′(t) < λvi,j(t).

1here we assume 4-neighbor adjacency, leaving diagonal adjacency extension as future work

210

• AllNeighborsAbove(i, j, t, λ): Every neighbor (p, q) of (i, j) has utility ≥ λ vi,j(t):

∀(p, q) : Adjacent(i, j, p, q)⇒ vp,q(t) ≥ λ vi,j(t).

• HighValueNeighbor(i, j, t, λ′): At least one neighbor (p, q) of (i, j) has utility

≥ λ′ vi,j(t):

∃(p, q) : Adjacent(i, j, p, q) ∧ vp,q(t) ≥ λ′ vi,j(t).

The parameters λ > 1 and λ′ > λ are chosen by domain experts (e.g., λ = 1.1,

λ′ = 2.0) to decide whether adjacent cells are sufficiently high-value compared to (i, j).

C.2.1.5. Predicates for Actions. For drone d , we unify all action symbols by using d

as subscript:

• FireAtDroned(d
′): Drone d fires at drone d′.

• FireAtCCTV d(c): Drone d fires at CCTV c.

• FireAtCelld(i, j): Drone d fires at cell (i, j).

• MoveTod(i, j): Drone d moves to cell (i, j).

• AssignedAction(d, a): The HQ has suggested action a to drone d.

• CommConsistent(d): Communication between drone d and its HQ is functioning.

• ExecuteAssignedActiond(a): Suggested action a is executed.

Throughout the subsequent formulations, each ground action αd will be taken from

drone d ’s action space at time t, denoted by Ad(t).

211

C.2.2. Formulating Ethical Norms

Using the deontic operators and the predicates defined, we formalize ethical norms Nd

as operating rules of drone d for the ethical compliance verification process. The formal

specification of all eight deontic rules is presented in Section 5.3.2. Below we reproduce

the formal specification for reference and provide additional context for each norm.

212

Formal Specification of Norms Nd as Deontic Rules

Norm 1: Never firing at cell: FFireAtCelld(i, j)← blue(d)

Norm 2: Prohibition of firing at civilian areas: FFireAtDroned(d′) ←

blue(d)∧red(d′)∧position(d, i, j, t)∧position(d′, i, j, t)∧CivilianArea(i, j)∧

InFireRange(d, d′) ∧ ¬ImmediateThreat(d′)

Norm 3: Obligation to follow HQ orders (if communication is consis-

tent): OExecuteAssignedActiond(a) ← blue(d) ∧ CommConsistent(d) ∧

AssignedAction(d, a)

Norm 4: Prohibition of friendly fire: FFireAtDroned(d′)← blue(d)∧ blue(d′)∧

SameTeam(d, d′)

Norm 5: Permission to engage a red drone in a civilian area (under

threat): PFireAtDroned(d
′) ← blue(d) ∧ red(d′) ∧ position(d, i, j, t) ∧

position(d′, i, j, t) ∧ InFireRange(d, d′) ∧ CivilianArea(i, j) ∧

ImmediateThreat(d′)

Norm 6: Forbid firing if RED drone is not an immediate threat and

a lower-utility neighbor exists: FFireAtDroned(d′) ← blue(d) ∧

red(d′) ∧ position(d, i, j, t) ∧ position(d′, i, j, t) ∧ InFireRange(d, d′) ∧

¬ImmediateThreat(d′) ∧ HasLowerUtilityNeighbor(i, j, t, λ)

Norm 7: Obligated to engage a threat if all neighbors are higher util-

ity: OFireAtDroned(d
′) ← blue(d) ∧ red(d′) ∧ position(d, i, j, t) ∧

position(d′, i, j, t) ∧ InFireRange(d, d′) ∧ ImmediateThreat(d′) ∧

AllNeighborsAbove(i, j, t, λ)

Norm 8: Obligated to engage a threat if any neighbor is extremely high-

value: OFireAtDroned(d
′) ← blue(d) ∧ red(d′) ∧ position(d, i, j, t) ∧

position(d′, i, j, t) ∧ InFireRange(d, d′) ∧ ImmediateThreat(d′) ∧

HighValueNeighbor(i, j, t, λ′)

213

Norm 1: Never firing at cell. A BLUE drone is always forbidden from deliberately

firing on a cell (i, j).

Norm 2: Prohibition of firing at civilian areas. The BLUE drone must refrain from

firing over a cell (i, j) designated as a civilian area to avoid damage. For example, if d

and d′ are co-located in a hospital cell, the BLUE drone is forbidden from engaging.

Norm 3: Obligation to follow HQ orders (if communication is consistent). The BLUE

drone must comply with HQ instructions if the communication channel is reliable at that

step, ensuring centralized coordination.

Norm 4: Prohibition of friendly fire. A BLUE drone must never fire at another BLUE

drone.

Norm 5: Permission to engage a RED drone in a civilian area (under threat). If a RED

drone is an immediate threat inside a civilian area, the BLUE drone may fire to prevent

severe harm.

Norm 6: Forbid firing if RED drone is not an immediate threat and a lower-utility

neighbor exists. If the RED drone is not evidently threatening, and there is a less valuable

neighboring cell, the BLUE drone should not fire, in hopes the RED drone moves to that

location.

Norm 7: Obligated to engage a threat if all neighbors are higher utility. If all neigh-

boring cells are more valuable and the RED drone is an immediate threat, the BLUE

drone must fire to prevent the threat from moving to those cells.

Norm 8: Obligated to engage a threat if any neighbor is extremely high-value. If any

neighboring cell is extremely critical and the RED drone is an immediate threat, the

BLUE drone must fire to prevent catastrophic damage.

214

C.2.3. Integrity Constraints

Integrity constraints (ICs) are conditions that must always hold to maintain system con-

sistency and safety. Their satisfaction is guaranteed by the computation of feasible status

sets. Below are illustrative ICs, whose intuitive meaning is that the conjunction on the

right-hand side of ← must be false in order for the IC to be satisfied.

IC_1: Engagement Within Firing Range. Drone d cannot fire at another drone d ′

unless the target is within its firing range:

← FireAtDroned(d
′) ∧ ¬ InFireRange(d , d ′).

IC_2: Adequate Payload Requirement. Drone d cannot fire if it lacks sufficient pay-

load:

← FireAtDroned(d
′) ∧ ¬ HasPayload(d).

C.2.4. Action Constraints

Action constraints (ACs) define permissible combinations of concurrent actions within a

single time step for drone d . Below is an illustrative constraint.

AC_1: Single Target Engagement. Drone d cannot engage multiple targets simulta-

neously:

← FireAtDroned(d1) ∧ FireAtDroned(d2) ∧ d1 ̸= d2.

The logic here might reflect a more detailed temporal separation, but in a single-step

concurrency model, we encode it as a denial constraint of performing both at once.

215

C.2.5. Status Sets and Feasibility

To ensure that drone d acts ethically, we verify whether its intended actions are part of

a feasible status set. A status set SS d is a set of ground status atoms representing the

deontic statuses of drone d ’s actions. A status set is feasible if it satisfies the following

conditions (44):

(1) Oαd ∈ SS d =⇒ Pαd ∈ SS d.

(2) Oαd ∈ SS d =⇒ Doαd ∈ SS d.

(3) Doαd ∈ SS d =⇒ Pαd ∈ SS d.

(4) Pαd ∈ SS d =⇒ Fαd /∈ SS d.

(5) Pαd ∈ SS d =⇒ the preconditions of αd are satisfied in Sd(t).

(6) SS d is closed under drone d ’s operating rules (i.e., if a rule’s body is satisfied, its

head is in SS d).

(7) The set of actions ADo(SS d) = {αd | Doαd ∈ SS d} satisfies the action constraints

AC .

(8) The resulting state after executing {αd | Doαd ∈ SS d} satisfies the integrity

constraints IC .

The set ADo(SS d) represents the executable set of concurrent actions that is ethically

consistent with the norms.

C.2.6. Ethically Feasible Status Set Computation Algorithm

We now present the procedure for computing drone d ’s feasible status set at a given time

step. More specifically, we leverage (36) for feasible status set computation. Our approach

relies on two algorithms:

216

(1) A least status set generation (Algorithm 11), which initializes and expands a

status set until it attains a stable status, and

(2) An ethical status set search (Algorithm 12), which systematically enumerates and

checks candidate status sets for feasibility.

Given a set A of actions, we define SA(A) = {Op α | α ∈ A and Op ∈ {F,P,O,Do}}

to be the set of all possible status atoms over actions in A.

Here, Algorithm 11 (LSS) starts with a set of status atoms SS and incrementally

applies drone d ’s operating rules. Whenever Oαd is inferred, it triggers the inclusion of

Pαd and Doαd. Similarly, if Doαd is inferred, then Pαd must also be included. During

the closure process, if any contradiction arises (e.g., both Pαd and Fαd appear, or an

action αd is permitted even though its preconditions are not satisfied), the algorithm

returns ⊥, indicating that no feasible set can be formed.

Then, Algorithm 12 uses the result of the LSS process as a baseline and explores

different ways of assigning the “do” status Doαd for those actions αd not precluded by Fαd

or unsatisfied preconditions. The algorithm systematically expands candidate status sets,

checks action constraints (e.g., no simultaneous movement and firing), and enumerates

only those sets that remain free of contradictions. The procedure returns a collection

of at most τ ethically feasible status sets (possibly none), each of which specifies a valid

concurrency of drone d ’s actions in the current time step.

If Algorithm 11 (LSS) returns ⊥, it means there is no ethically compliant action

space for drone d in the current state including SS ; in that scenario, d may perform no

operation or revert to a default fallback behavior. If Algorithm 12 succeeds, it outputs

a set of feasible status sets, each of which represents one valid concurrency option d can

217

Algorithm 11 LSS : Least Status Set Algorithm for Drone d

Input: A status set SS , drone state Sd(t), norms Nd, and a set DC of denial action constraints
for drone d .

Output: A status set SSd or ⊥.
1: for each Oαd ∈ SS s.t. Pαd ̸∈ SS do
2: Add Pαd to SS .
3: end for
4: for each Oαd ∈ SS s.t. Doαd ̸∈ SS do
5: Add Doαd to SS .
6: end for
7: for each Doαd ∈ SS s.t. Pαd ̸∈ SS do
8: Add Pαd to SS .
9: end for

10: if there exists αd s.t. (i) {Pαd,Fαd} ⊆ SS or (ii) Pαd ∈ SS and Pre(αd) is false in St then
return ⊥.

11: end if
12: if {αd | Doαd ∈ SS} does not satisfy DC then return ⊥.
13: end if
14: SS ′

d := SS // Start with an initial empty set.
15: repeat
16: SS ′′

d := SS ′
d.

17: for each ground rule r in Nd do
18: Let r be SAd ← χ & SAd,1 & . . . & SAd,n.
19: if χ is true in Sd(t) and {SAd,1, . . . ,SAd,n} ⊆ SS ′

d then
20: Add SAd to SS ′

d.
21: if SAd = Oαd then
22: Add Pαd and Doαd to SS ′

d.
23: else if SAd = Doαd then
24: Add Pαd to SS ′

d.
25: end if
26: if there exists αd s.t. (i) {Pαd,Fαd} ⊆ SS ′

d or (ii) Pαd ∈ SS ′
d and Pre(αd) is

false in Sd(t) then return ⊥ // Contradiction or invalid precondition.
27: end if
28: if {αd | Doαd ∈ SS ′

d} does not satisfy DC then return ⊥ // Denial constraint
violated.

29: end if
30: end if
31: end for
32: until SS ′

d = SS ′′
d

33: return SS ′
d

218

Algorithm 12 Ethical Status Set Computation Algorithm for Drone d

Input: Status set SSHQ , state Sd(t), norms Nd, integrity constraints IC , action constraints
AC , a function conc(·), drone d ’s action space Ad(t), and an integer τ (the threshold for
enumerating feasible sets).

Output: A set of feasible status sets {SSd} or ⊥.
1: DC ← {denial constraints in AC}.
2: LSS d ← LSS(SSHQ , Sd(t),Nd,DC).
3: if LSS d = ⊥ then
4: LSSd ← LSS(∅, Sd(t),Nd,DC).
5: if LSSd = ⊥ then return ⊥ // No ethically compliant status set exists.
6: else
7: U = SSHQ .
8: end if
9: else

10: U = SA(Ad(t)).
11: end if
12: Ad := {αd | αd ∈ Ad(t), Pre(αd) is false in Sd(t) or Fαd ∈ LSSd}.
13: SAd :=

⋃
αd∈Ad

{Doαd,Oαd,Pαd}.
14: SAd := U \

(
SAd ∪ LSSd

)
.

15: SAd-Do := {Doαd | Doαd ∈ SAd}.
16: SAd-FPO := SAd \

(
SAd-Do

)
.

17: ToInspect := {LSS d ∪X | X ⊆ SAd-FPO}. Result := ∅.
18: while ToInspect ̸= ∅ and |Result | < τ do
19: Candidates := ToInspect . ToInspect := ∅.
20: if some elements of Candidates are feasible under IC & AC then // Feasibility check.
21: for each feasible set FeasSetd in Candidates do
22: Add FeasSetd to Result .
23: if |Result | = τ then return Result .
24: end if
25: end for
26: else
27: for each Candd in Candidates do // Expand candidates.
28: for each Doαd ∈

(
SAd-Do \ Candd

)
do

29: if (Candd ∪ {Doαd}) /∈ ToInspect then
30: Add (Candd ∪ {Doαd}) to ToInspect .
31: end if
32: end for
33: end for
34: end if
35: end while
36: return Result

219

execute at this time step. Formally, let Fd be the set of all ethically feasible status sets

for drone d . For each SS d ∈ Fd, the the CAS

XSSd
:= {αd | Doαd ∈ SS d}

is the actual set of actions that drone d will execute. All other subsets of actions

are masked out by the constraints and operating rules. Thus, drone d only picks from

these ethically compliant CASs, ensuring that every course of action is consistent with

the prescribed ethical and legal norms.

C.2.7. Rewards for Drones

The primary reward formulations are presented in Section 5.4.3. This appendix provides

the complete notation reference and additional details on the attack probability model.

C.2.7.1. Notation for Reward Functions. The following notation is used throughout

the reward formulations:

• DRED(t): Set of alive RED drones at time t

• DBLUE(t): Set of alive BLUE drones at time t

• ∆Bd(t): Battery consumed by drone d during time step t

• κd: Ammunition cost coefficient for drone d

• σd: Survival bonus coefficient for drone d

• vc(t) or vi,j(t): Value/utility of cell c (or cell (i, j)) at time t

• Cdanger(d
′, t): Set of cells in grid G that RED drone d′ can target given its current

payload pd′(t) and battery Bd′(t)

• Pattack(d
′, c′, t): Estimated probability that d′ attacks cell c′

220

• ∥xd(t)− xc∥: Euclidean distance between drone d and cell c at time t

C.2.7.2. Immediate Reward for BLUE Drone d at time t.

rdt = α ·

 ∑
d′∈DRED(t)
killed(d,d′,t)

costd′

− β ·∆Bd(t)− ζ · fired(d, t) · κd

+ δ · surv(d, t) · σd + ρ ·

 ∑
c:resp(d,c,t)

alive(c, t) · vc(t)


− ϕ ·

∑
c′∈Cdanger(d′,t)

vc′(t) · Pattack(d
′, c′, t)

C.2.7.3. Immediate Reward for RED Drone d′ at time t.

rd
′

t = α ·

 ∑
d∈DBLUE(t)
killed(d′,d,t)

costd

− β ·∆Bd′(t)

− ζ · fired(d′, t) · κd′ + δ · surv(d′, t) · σd′

+ ρ ·

 ∑
c:resp(d′,c,t)

alive(c, t) · vc(t)


+ ϕ ·

∑
c′∈Cdanger(d′,t)

vc′(t) · Pattack(d
′, c′, t)

Note that this is not the same as the negative of the reward for a BLUE drone because

the RED drones reward depends on the positions of all relevant BLUE drones that could

threaten it, not just one.

221

C.2.7.4. Attack Probability Model. The probability that RED drone d′ attacks cell

c′ within its remaining operational time is modeled as:

Pattack(d
′, c′, t) = P0(d

′, c′, t) ·
(
1− e−µ·Bd′ (t)

)
where µ > 0 is an attack urgency parameter and P0(d

′, c′, t) is the base targeting proba-

bility.

When ∆t = 0, the probability of attack is zero since the drone has no time to act.

As ∆t increases, the probability rises smoothly but with diminishing returns, and in the

limit ∆t→∞, the probability converges to P0(d
′, c′, t).

C.2.7.5. Base Attack Probability Model.

P0(d
′, c′, t) =

(
vc′ (t)

∥xd′ (t)−xc′∥+ε

)ξ

∑
c′′∈Cdanger(d′,t)

(
vc′′ (t)

∥xd′ (t)−xc′′∥+ε

)ξ

where ε is a small constant to avoid division by zero (e.g., ε = 10−3), and ξ (sharpness)

controls selectivity.

This model produces a normalized probability distribution similar to a softmax. If

two targets have the same value, the closer one is more likely to be chosen. If two targets

are at the same distance, the higher-valued one is favored. In general, ξ controls how

strongly the model discriminates between alternatives.

C.2.7.6. Team Reward. The team-level reward aggregates individual drone rewards:

RBLUE
t =

∑
d∈DBLUE(t)

rdt , RRED
t =

∑
d′∈DRED(t)

rd
′

t

222

C.3. Solving the Ethics-Guided GUARDIAN MDPs

The primary algorithms for Ethics-Guided Q-Learning (Algorithm 9) and HQ QMIX

Coordination (Algorithm 10) are presented in Section 5.4.1.1. This appendix provides the

complete pseudocode with additional implementation details.

C.3.1. Independent Q-Learning for Drones with Action Masking

For completeness, we reproduce the drone Q-learning algorithm from Section 5.4.1.1 with

additional implementation details.

Algorithm 13 Drone d : Ethics-Guided Q-Learning (Detailed)
Input: (1) Q-network Qd(s,X) with parameters θd, (2) discount factor γ, (3) learning

rate η, (4) exploration rate ϵ, (5) replay buffer B, (6) FSS enumeration threshold τ ,
(7) norms Nd, integrity constraints IC , action constraints AC .

1: for each episode or time step do
2: Observe current state sd(t)
3: Compute feasible status sets: Fd ← Algorithm 12

(
sd(t),Nd, IC ,AC , τ

)
4: if Fd = ⊥ then
5: (Fallback) If no feasible actions, do nothing or safe maneuver
6: Continue to next time step
7: end if
8: Masked actions: Âd(sd(t)) ← {XSSd

| SS d ∈ Fd}.
9: With probability ϵ, sample X uniformly from Âd(sd(t));

10: otherwise pick X = argmaxX′∈Âd(sd(t))
Qd

(
sd(t), X

′)
11: Execute CAS X, observe reward rd and next state sd(t+ 1)
12: Store transition (sd(t), X, rd, sd(t+ 1)) in buffer B
13: Update Q: sample minibatch from B;
14: for each (s, X, r, s′) in the minibatch:

y = r + γ max
X′∈Âd(s′)

Qd(s
′, X ′; θd)

L(θd) =
(
y −Qd(s,X; θd)

)2
θd ← θd − η∇θdL(θd)

15: end for

223

Algorithm 13 outlines the essential steps. Before selecting an action, drone d runs the

Ethical Status Set Computation Algorithm (Algorithm 12 in Appendix C.2.6) to obtain

Fd, the feasible status sets. It then transforms them into CASs XSSd
, forming the masked

action space Âd(s). A standard Q-learning step is performed over these masked CASs.

Because Âd(s) is pruned to only ethically compliant actions, the drone never attempts

disallowed or forbidden maneuvers during training or execution.

C.3.2. QMIX for HQ Coordination

While individual drones learn local policies (Appendix C.3.1), the HQ aims to coordinate

these drones to maximize team-level objectives. We adopt the QMIX algorithm, which is

a popular centralized training, decentralized execution method.

HQ MDP Formulation. Let k be an HQ controlling drones {d1, . . . , dm}. The HQ has

an MDPMHQ
k = (SHQ

k ,AHQ
k , PHQ

k , RHQ
k , γ), where:

• sHQ
k is the global (or near-global) state from HQ k’s perspective.

• a = (a1, . . . , am) is a joint action, where ai could be a suggested CAS for drone

di.

• PHQ
k (s′, s,a) describes the state transition at the HQ level.

• RHQ
k (s,a) is the team-level reward, capturing overall mission objectives.

Mixing Network. In QMIX, each drone di maintains a local Q-function Qdi (like in

Appendix C.3.1), while the HQ learns a mixing network :

Qtot(s
HQ
k , a) = f

(
Qd1(sd1 , a1), . . . , Qdm(sdm , am); s

HQ
k

)
,

224

where f(·) is trained to approximate the team-level Q-function. A monotonicity constraint

ensures that maximizing each drone’s local Q-value leads to maximizing Qtot.

Training and Execution Flow. Algorithm 14 sketches the HQ’s procedure:

(1) The HQ observes sHQ
k (t) and queries each drone di for Qdi(sdi(t), ·).

(2) The HQ uses the mixing network f to compute Qtot(s
HQ
k (t),a) for joint actions

a and picks aHQ(t) = argmaxa Qtot(. . .).

(3) HQ k suggests (a1, . . . , am) to each drone. However, each drone di will verify if

ai (or the CAS it implies) is in its feasible set. If it is not, di will default to a

locally feasible CAS.

(4) The HQ collects the team reward rk(t) and next state sHQ
k (t + 1), then updates

its mixing network via temporal-difference learning.

This design ensures ethical compliance is preserved at the drone level, while the HQ

pursues a higher-level global objective. When the HQ selects drone actions, it attempts

to pick (ad)d∈Dk
that jointly maximize Qtot. However, each drone d still enforces its own

feasibility mask. If the HQ suggests an infeasible CAS (e.g., a direct violation of deontic

rules), the drone’s local logic rejects or modifies it. Consequently, the HQ cannot force a

drone to violate ethics; rather, it focuses on coordinating feasible CASs across the team

to achieve higher-level goals. For completeness, we reproduce the HQ QMIX algorithm

from Section 5.4.2 with additional context.

Here, we emphasize the fact that as each drone’s RL policy is restricted to CASs that

pass the deontic logic checks (Appendix C.2.6), we ensure that no unethical or forbidden

behavior is ever attempted, even during exploratory phases. This mitigates risk in safety-

critical domains.

225

Algorithm 14 HQ k: QMIX Coordination Algorithm (Detailed)
Input: (1) mixing network parameters θ, (2) discount factor γ, (3) learning rate ηHQ, (4)

replay buffer BHQ, (5) monotonic constraint on f(·).
1: for each episode or time step do
2: Observe HQ state sHQ

k (t)
3: for each drone di ∈ Dk do
4: Obtain local Q-values Qdi

(
sdi(t), ·

)
5: end for
6: Use f(·) to compute Qtot

(
sHQ
k (t),a

)
for candidate a

7: aHQ(t) = argmaxaQtot
(
sHQ
k (t),a

)
8: HQ k suggests aHQ

i (t) to each drone di
9: Drone feasibility check: each di confirms or replaces aHQ

i (t) based on its feasible
CASs

10: Execute final joint action a(t) on environment
11: Observe rk(t) and next state sHQ

k (t+ 1)

12: Store (sHQ
k (t),a(t), rk(t), s

HQ
k (t+ 1)) in BHQ

13: Train mixing network: sample minibatch from BHQ

ytot = rk + γmax
a′

Qtot
(
sHQ
k (t+ 1),a′; θ−

)
LHQ(θ) =

(
ytot −Qtot(s

HQ
k (t),a(t); θ)

)2
θ ← θ − ηHQ∇θ LHQ(θ)

14: end for

Although concurrency of actions can lead to an exponentially large search space (up to

2|Ad| subsets), the normative constraints and integrity rules prune this space significantly.

Consequently, drones only deal with a tractable subset of CASs in practice.

Similarly, The HQ uses team-level RL (here, QMIX) to coordinate multiple drones.

Crucially, a drone’s local deontic logic always has the final say on whether a suggested

CAS is admissible. Thus, HQ commands cannot violate ethical constraints, preserving

overall system compliance.

The same ethics-guided principle applies whether we train drones independently (with

or without a global HQ) or in a fully centralized multi-agent RL setting. As long as

226

action masking is enforced at the drone level, the resulting learned policies remain norm-

compliant. Hence, this architecture ensures that no agent (drone or HQ) can inadver-

tently produce norm-violating behaviors at runtime while still leveraging off-the-shelf RL

algorithms to learn policies in a complex multi-agent environment.

This layered approach guarantees ethical/legal compliance by design, reducing the risk

of unwanted or forbidden actions in complex, multi-agent environments, e.g., GUARDIAN.

C.4. Assumptions in GUARDIAN Testbed

In developing the GUARDIAN testbed environment and formulating the mathematical

models for the city grid, drones, CCTV cameras, and HQs, several assumptions have been

made to simplify the implementation and focus on key aspects of the simulation. They

are outlined in this section.

C.4.1. City Grid Assumptions

(1) Grid Structure:

• The city is represented as a two-dimensional grid G of fixed dimensions

M ×N , where M,N ∈ N.

• The grid consists of discrete cells located at integer coordinates (i, j), with

1 ≤ i ≤M and 1 ≤ j ≤ N .

(2) Cell Values:

• Each cell (i, j) has an initial value vi,j(0) ∈ R>0, representing its importance

in the grid.

227

• The initial cell values are assigned randomly using a uniform distribution:

vi,j(0) ∼ Uniform(vmin, vmax)

where vmin, vmax ∈ R>0.

(3) Cell Destruction:

• Cells can be destroyed by RED Team drones, resulting in their value drop-

ping to zero.

• When a cell is destroyed, it is considered dead and cannot be targeted again.

But the drones can traverse through the cell.

• For simplicity, the change in cell value upon destruction is:

∆vi,j(t) = −vi,j(t)

resulting in vi,j(t+ 1) = 0.

• CCTV in the cell is destroyed as well. Hence, alivec(t + 1) = false if the

CCTV c is located in the cell xc = (i, j)

(4) Grid Dynamics:

• The grid’s structure (dimensions and cell positions) remains static through-

out the simulation.

• Dynamic changes occur only in cell values due to destruction by drones; no

other environmental factors alter cell values.

• We assume that the distance metric ∥ · ∥ stays consistent for one episode of

the game. While we use the Chebyshev distance (maximum of absolute dif-

ferences in coordinates) for grid environments, other metrics like Euclidean

228

or Manhattan distances can also be applied depending on the environment’s

characteristics. The choice of distance metric affects the drone’s observation

capabilities and can be adjusted based on specific scenario requirements.

C.4.2. Drone Assumptions

(1) Team Composition:

• Both the BLUE Team (team = 1) and the RED Team (team = 2) deploy

multiple drones.

(2) Initial Deployment:

• Drones are randomly placed on the grid at positions that are unoccupied by

other drones.

(3) Drone Capabilities:

• Each drone has battery capacity Bd(0) ∈ R>0 and payload pd(0) ∈ N0.

• Drones have a fixed view range rd ∈ N and fire range fd ∈ N. In our

environment, we assume no obstacles are present. We assume homogeneous

rd and fd values across drones of the same team for simplicity.

• BLUE Team drones do not fire at cells to avoid damaging the city; they only

engage enemy drones.

• RED Team drones can fire at both enemy drones and cells.

(4) Actions:

• Actions have no duration, they are immediately executed at time t and their

effect is there at time t+ 1.

229

• Drones can move to adjacent cells (up, down, left, right) if the target cell is

within the grid and not occupied by another drone.

• Drones can move onto destroyed cells.

• There is no friendly fire. Drones do not attack other drones or CCTVs from

their own team.

(5) Communication with HQ:

• Drones prioritize orders from their HQ over their own decisions when com-

munication is consistent.

• Communication failures may occur, in which case drones act autonomously

based on their own MDPs.

• The possibility and frequency of communication failures are assumed and

modeled in the simulation.

(6) Observation Limitations:

• Drones observe the environment within their view range rd but have no

knowledge beyond that.

• Observations are limited to the public states of other drones and cameras;

drones cannot access others’ internal states.

C.4.3. CCTV Camera Assumptions

(1) Deployment:

• CCTV cameras are deployed only by the BLUE Team (team = 1).

• The number of CCTV cameras C1 ≥ 0 is determined at the start of the

simulation.

230

• Cameras are placed at fixed positions on the grid and do not move through-

out the simulation.

(2) Capabilities:

• Each CCTV camera has an initial health hc(0) ∈ R>0 and a view range

rc ∈ N.

• Cameras do not have any offensive capabilities; they cannot attack or inter-

fere with drones.

• The primary function is surveillance, providing observations to the BLUE

Team’s HQ.

• We assume that each CCTV, as long as it is not destroyed, sends constantly

footage to the HQ.

(3) Vulnerabilities:

• A camera is destroyed if the corresponding cell where the camera is located

is destroyed.

(4) Observation Limitations:

• Cameras observe the environment within their view range rc.

• Observations are limited to public states; cameras cannot access internal

states of drones.

C.4.4. Headquarters Assumptions

(1) Control and Communication:

• The HQ has the authority to assign actions to its drones (by sending them

order).

231

• Communication between the HQ and drones may experience failures (prob-

abilistic), leading to drones acting autonomously.

(2) Observation and Decision-Making:

• The HQ aggregates observations from its drones and CCTV cameras (for

the BLUE Team) to form a global view.

• The HQ operates under its own MDP, making strategic decisions to optimize

team objectives.

• Hence, we assume that the action HQ suggests to drone is more oriented

toward team-specific objective than the drone’s individual benefit.

(3) Team Reward:

• The HQ’s reward function considers the cumulative rewards of its drones

C.4.5. Learning and Decision Making Assumptions

(1) Drones’ Learning Mechanism:

• Drones use Independent Q-Learning (IQL) to learn policies based on their

individual MDPs.

• Each drone updates its Q-values independently, without explicit coordina-

tion with other drones.

(2) HQ’s Learning Mechanism:

• The HQ employs the QMIX algorithm to learn a joint policy for its drones,

decomposing the team value function into individual value functions.

• The HQ assumes access to the individual Q-values of its drones for the

mixing network in QMIX.

232

C.5. Additional Performance Metrics

We also measured the following additional performance evaluation metrics.

• Payload efficiency. Ratio of eliminated enemy drones to the total ammunition

expended. Measures the efficiency of ammunition usage by drones, reflecting the

accuracy and effectiveness in resource management.

• Action entropy. Average entropy of drones’ action selection distributions. Rep-

resents how varied drone actions are over time—higher entropy indicates ex-

ploration, while lower entropy indicates consistency or exploitation of specific

strategies.

• Mean Q-values. Average confidence level drones have in their learned action

strategies.

Table C.1 shows that payload efficiency, action entropy, and mean Q-values are gen-

erally improved by compliance requirements—action entropy never worsens, and payload

efficiency and mean Q-values only worsen in 3 cases each.

C.6. Full Experimental Results

Figures C.1–C.6 report the full experimental results.

C.7. Impact of Norm Combinations on Performance

The previous experiments utilize either the complete set of eight norms or no norms.

To understand how specific norm subsets contribute to system performance, we conducted

experiments with carefully selected norm combinations. These experiments maintain a

233

Payload efficiency (higher is better)
16 BLUE drones 32 BLUE drones 64 BLUE drones
64x64 128x128 64x64 128x128 64x64 128x128

1:1 0.959 0.872 1.181 1.157 1.852 1.862
2:1 1.012 1.001 1.261 1.325 1.864 1.845
3:1 1.010 1.033 1.316 1.347 1.921 1.975
1:2 0.959 1.153 1.568 1.829 2.459 2.283
1:3 1.170 1.292 2.062 2.015 2.297 3.093

Action entropy (lower is better)
16 BLUE drones 32 BLUE drones 64 BLUE drones
64x64 128x128 64x64 128x128 64x64 128x128

1:1 0.698 0.748 0.607 0.629 0.457 0.501
2:1 0.694 0.759 0.596 0.619 0.460 0.494
3:1 0.683 0.748 0.567 0.623 0.459 0.500
1:2 0.640 0.634 0.467 0.502 0.362 0.381
1:3 0.557 0.571 0.402 0.462 0.292 0.327

Mean Q-values (higher is better)
16 BLUE drones 32 BLUE drones 64 BLUE drones
64x64 128x128 64x64 128x128 64x64 128x128

1:1 1.428 0.651 0.934 1.639 1.104 2.354
2:1 1.838 0.975 1.296 1.474 1.211 2.720
3:1 1.869 1.458 1.574 1.483 1.137 2.279
1:2 1.338 1.592 1.324 2.335 1.879 3.402
1:3 1.530 1.364 1.574 1.965 2.894 3.179

Table C.1. Compliance cost when varying B:R ratio, grid size, and number of BLUE drones.

1:1 BLUE-to-RED drone ratio across all configurations, ensuring symmetric competitive

scenario.

C.7.0.1. Norm Selection for Experiment Design. We evaluated norm combinations

of three different sizes: 2 norms (5 combinations), 4 norms (3 combinations), and 6 norms

(2 combinations). Each combination was strategically selected to test specific hypotheses

about norm interactions and their operational impact.

2-Norm Combinations:

• [1, 2]: Civilian area prohibition and friendly fire prohibition. Tests pure constraint-

based protection without engagement guidance.

234

64x64 grid, 16 BLUE drones 64x64 grid, 32 BLUE drones 64x64 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

20

30

40

50

60

70

80

90

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

60

65

70

75

80

85

90

95

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

65

70

75

80

85

90

95

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

128x128 grid, 16 BLUE drones 128x128 grid, 32 BLUE drones 128x128 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

55

60

65

70

75

80

85

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

55

60

65

70

75

80

85

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

60

65

70

75

80

85

90

95

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

Figure C.1. City protection.

64x64 grid, 16 BLUE drones 64x64 grid, 32 BLUE drones 64x64 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

80

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

80

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

10

20

30

40

50

60

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

128x128 grid, 16 BLUE drones 128x128 grid, 32 BLUE drones 128x128 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

0

10

20

30

40

50

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

10

20

30

40

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

10

20

30

40

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

Figure C.2. Win rate.

235

64x64 grid, 16 BLUE drones 64x64 grid, 32 BLUE drones 64x64 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

100

200

300

400

500

600

700

800

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

100

200

300

400

500

600

700

800

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

300

400

500

600

700

800

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

128x128 grid, 16 BLUE drones 128x128 grid, 32 BLUE drones 128x128 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

300

400

500

600

700

800

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

400

500

600

700

800

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

400

500

600

700

800

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

Figure C.3. Threat neutralization steps.

64x64 grid, 16 BLUE drones 64x64 grid, 32 BLUE drones 64x64 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

128x128 grid, 16 BLUE drones 128x128 grid, 32 BLUE drones 128x128 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

Figure C.4. Payload efficiency.

236

64x64 grid, 16 BLUE drones 64x64 grid, 32 BLUE drones 64x64 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

128x128 grid, 16 BLUE drones 128x128 grid, 32 BLUE drones 128x128 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

1.2

1.4

1.6

1.8

2.0

2.2

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

1.0

1.5

2.0

2.5

3.0

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

Figure C.5. Action entropy.

64x64 grid, 16 BLUE drones 64x64 grid, 32 BLUE drones 64x64 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

0

5

10

15

20

25

30

35

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

5

10

15

20

25

30

35

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

80

100

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

128x128 grid, 16 BLUE drones 128x128 grid, 32 BLUE drones 128x128 grid, 64 BLUE drones

0 1000 2000 3000 4000 5000
Episode

0

10

20

30

40

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

5

10

15

20

25

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

0 1000 2000 3000 4000 5000
Episode

0

10

20

30

40

50

60

70

Va
lu

e

Compliance 1:1
Compliance 2:1
Compliance 3:1
Compliance 1:2
Compliance 1:3
No compliance 1:1
No compliance 2:1
No compliance 3:1
No compliance 1:2
No compliance 1:3

Figure C.6. Mean Q-values.

237

0 1000 2000 3000 4000 5000
Episode

300

200

100

0

100

200

300

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(a) 64×64 grid, 16v16 drones

0 1000 2000 3000 4000 5000
Episode

400

300

200

100

0

100

200

300

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(b) 64×64 grid, 32v32 drones

0 1000 2000 3000 4000 5000
Episode

400

200

0

200

400

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(c) 64×64 grid, 64v64 drones

0 1000 2000 3000 4000 5000
Episode

500

400

300

200

100

0

100

200

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(d) 128×128 grid, 16v16 drones

0 1000 2000 3000 4000 5000
Episode

600

500

400

300

200

100

0

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(e) 128×128 grid, 32v32 drones

0 1000 2000 3000 4000 5000
Episode

600

400

200

0

200

R
ew

ar
d

No Norms
2 Norms (n=5)
4 Norms (n=3)
6 Norms (n=2)
All Norms

(f) 128×128 grid, 64v64 drones

Figure C.7. Test rewards across norm combinations in symmetric (1:1) competitive scenarios.
Lines represent mean performance with standard deviation bands.

• [2, 3]: Friendly fire prohibition and movement permissions. Evaluates mobility

with minimal firing constraints.

• [4, 5]: Non-civilian firing permission and civilian area engagement permission.

Examines permission-only frameworks without prohibitions.

• [6, 7]: Threat-based firing prohibition and high-value neighbor obligation. Tests

the interaction between strategic restraint and mandatory engagement.

• [7, 8]: High-value neighbor obligation and extremely high-value neighbor obli-

gation. Evaluates redundant obligation structures.

4-Norm Combinations:

238

• [1, 2, 3, 4]: Core prohibitions (1-2) with basic permissions (3-4). Tests whether

fundamental constraints and permissions suffice for coordination.

• [2, 5, 6, 7]: Engagement rules and threat assessment norms. Examines combat-

focused norms without civilian protection.

• [5, 6, 7, 8]: Advanced threat and utility-based norms. Tests high-level strategic

norms without basic constraints.

6-Norm Combinations:

• [1, 2, 3, 4, 5, 6]: All basic norms plus civilian engagement rules. Excludes only

the obligation norms (7-8).

• [3, 4, 5, 6, 7, 8]: All permissions and advanced engagement norms. Excludes

basic prohibitions (1-2).

C.7.0.2. Results. Figure C.7 reveals compelling patterns across deployment densities.

In sparse scenarios (16v16 drones), no-norms achieves highest rewards while complete

norm sets underperform. Notably, this relationship inverts at high density (64v64 drones),

where the complete 8-norm set dominates all configurations.

The 2-norm combinations exhibit particularly poor performance across most scenar-

ios. Combination [1,2] (pure prohibitions) paralyzes the decision-making by constraining

actions without providing guidance. Combination [4,5] (pure permissions) creates confu-

sion among drones through uncoordinated engagement. The [7,8] pairing of obligations

fails because both norms trigger simultaneously without supporting permissions, violating

feasibility conditions.

239

The 4-norm combinations show intermediate performance. Configuration [1,2,3,4] pro-

vides basic functionality but lacks engagement obligations critical for high-density coordi-

nation. Configuration [5,6,7,8] contains sophisticated engagement logic but missing basic

prohibitions (1-2) allows friendly fire and civilian area violations.

The 6-norm combinations reveal the importance of complete deontic chains. Config-

uration [1,2,3,4,5,6] includes all constraints and permissions but lacks obligations (7-8),

resulting in passive behavior during critical engagements. Configuration [3,4,5,6,7,8] has

obligations and permissions but missing prohibitions (1-2) undermines ethical constraints.

The failure of partial norm sets results in the feasible status set computation. From

Section 3.3, the LSS algorithm requires:

If Oα ∈ SSd then Pα ∈ SSd

Consider combination [7,8] under high-density scenario. When AllNeighborsAbove(i, j, t, λ)

holds, Norm 7 generates: OFireAtDroned(r). Hence, LSS closure requires: PFireAtDroned(r).

However, without Norm 5, this permission is absent. Hence, the status set becomes in-

feasible: SSd /∈ Fd(s)

Similarly, combination [4,5] provides permissions without prohibitions. The action

space:

Ad(s) = {XSSd
| SSd ∈ Fd(s)}

becomes overcrowded with permitted but uncoordinated actions, leading to targeting

collisions.

240

Also, the transition from sparse to dense deployments fundamentally changes coordina-

tion requirements. At 64v64 drones in a 64×64 grid, the probability that multiple BLUE

drones observe the same RED target approaches unity. Without obligations (Norms 7-8),

each drone independently maximizes its Q-function:

ai = arg max
a∈Adi

Q(s, a)

This leads to redundant targeting where multiple drones engage the same enemy while

others remain unengaged. The complete norm set prevents this through obligation-driven

coordination. When Norm 7 triggers for drone di, it creates a deterministic assignment

that other drones respect, preventing collisions.

	ABSTRACT
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Problem Statement and Research Agenda
	1.3. Research Approach and Contributions
	1.4. Dissertation Structure and Chapter Organization
	1.5. Expected Contributions and Impact

	Chapter 2. A Drone Early Warning System (DEWS) for Predicting Threatening Trajectories
	2.1. Introduction
	2.2. Related Work
	2.3. DTPP: Drone Threat Prediction Problem
	2.4. DEWS Architecture
	2.5. Experiments
	2.6. Limitations and Future Work
	2.7. Conclusion

	Chapter 3. STATE: Safe and Threatening Adversarial Trajectory Engine
	3.1. Introduction
	3.2. Related Work
	3.3. Problem Formulation
	3.4. Methodology
	3.5. Experiments
	3.6. Conclusions, Limitations, & Future Work

	Chapter 4. Declarative Logic-based Pareto-OptimalAgent Decision Making
	4.1. Introduction
	4.2. Related Work
	4.3. Motivating Example
	4.4. Background: IMPACT Agents
	4.5. Pareto-optimal (Feasible) Status Sets
	4.6. Algorithms
	4.7. Experimental Assessment
	4.8. Choosing an Optimal Feasible Status Set
	4.9. Limitations and Future Work
	4.10. Conclusions

	Chapter 5. GUARDIAN: Governance-Unified Aerial Reinforcement-DefenseIn Accordance with Norms
	5.1. Introduction
	5.2. Related Work
	5.3. The GUARDIAN Framework
	5.4. Combining Deontic Logic with RL
	5.5. Experimental Assessment
	5.6. Limitations and Future Work
	5.7. Conclusions

	Chapter 6. Future Directions and Conclusion
	6.1. DUCK Implementation
	6.2. DUCK Capabilities
	6.3. Limitations and Future Directions
	6.4. Conclusion

	References
	References
	Appendix A. A Drone Early Warning System (DEWS) for Predicting Threatening Trajectories
	Appendix B. Declarative Logic-based Pareto-OptimalAgent Decision Making
	B.1. Proofs

	Appendix C. GUARDIAN: Governance-Unified Aerial Reinforcement-DefenseIn Accordance with Norms
	C.1. Structure of GUARDIAN
	C.2. Incorporating Ethical/Legal Norms in GUARDIAN Framework
	C.3. Solving the Ethics-Guided GUARDIAN MDPs
	C.4. Assumptions in GUARDIAN Testbed
	C.5. Additional Performance Metrics
	C.6. Full Experimental Results
	C.7. Impact of Norm Combinations on Performance

