

Oboyob: A sequential-semantic Bengali image captioning engine

Tonmoay Deb, Mohammad Zariff Ahsham Ali, Sanchita Bhowmik, Adnan Firoze, Syed Shahir Ahmed, Muhammad Abeer Tahmeed, N.S.M. Rezaur Rahman and Rashedur M. Rahman*

Department of Electrical & Computer Engineering, North South University, Bangladesh

Abstract. Understanding the context with generation of textual description from an input image is an active and challenging research topic in computer vision and natural language processing. However, in the case of Bengali language, the problem is still unexplored. In this paper, we address a standard approach for Bengali image caption generation through subsampling the machine translated dataset. Later, we use several pre-processing techniques with the state-of-the-art CNN-LSTM architecture-based models. The experiment is conducted on standard Flickr-8K dataset, along with several modifications applied to adapt with the Bengali language. The training caption subsampled dataset is computed for both Bengali and English languages for further experiments with 16 distinct models developed in the entire training process. The trained models for both languages are analyzed with respect to several caption evaluation metrics. Further, we establish a baseline performance in Bengali image captioning defining the limitation of current word embedding approaches compared to internal local embedding.

Keywords: Image captioning, CNN, LSTM, natural language processing, computer vision, Bengali image captioning, merge architecture, par-inject architecture, machine translated caption subsampling

1. Introduction

An expressive image description is paramount to summarize the contents of an image in a way which tells the story without delving into unimportant details. Text descriptions can aid visually impaired people to draw a mental picture of an image in question. However, there are many ways to express an image while not losing its core meaning. Different descriptions can offer different perspectives on how an image is perceived by its viewer. Taking these things into account, automatically obtaining the sentence level description of an image in different languages has become the challenge for the researchers in computer vision and natural language processing [16]. Though there are substantial research works of representing an image in English, the use of

other languages is still an area of exploration. The inclusion of different languages may solve many real-life problems, for instance, early childhood education, image retrieval, and navigation for the blind. These forms of sentence representation of an image are known as image captioning which deals with mainly two challenges. The first challenge is to identify objects in an image in the domain of computer vision, and the second one is to create a correlation among the objects and sentence-level descriptions in the domain of natural language processing [17]. An image may contain various information but extracting the insightful visual information is possible only by emulating the concept of Biological Vision System (BVS). Computer Vision has different approaches involved to mimic the BVS [9, 18], however, one of the major obstacles is to form a machine learning model to merge these two domains for the automatic caption generation in Bengali language.

*Corresponding author. Rashedur M. Rahman, Department of Electrical & Computer Engineering, North South University, Bangladesh. E-mail: rashedur.rahman@northsouth.edu.

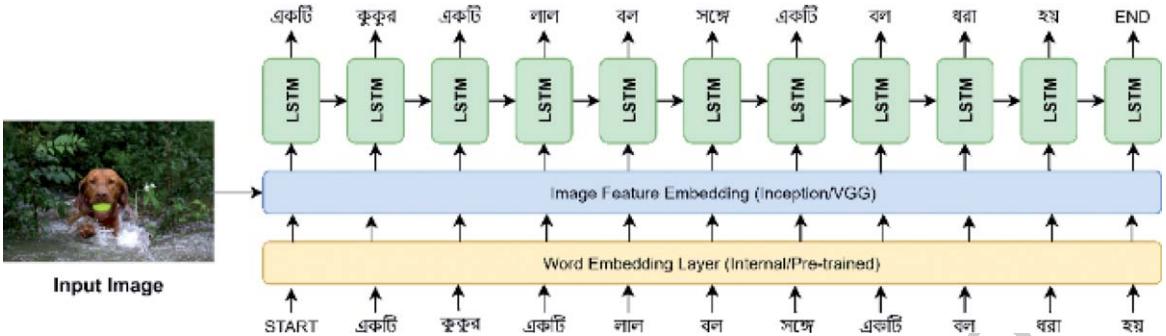


Fig. 1. A standard CNN-RNN involved image captioning process illustrated with Bengali language. Word embeddings and image features are computed through respective CNN models and word embedding techniques.

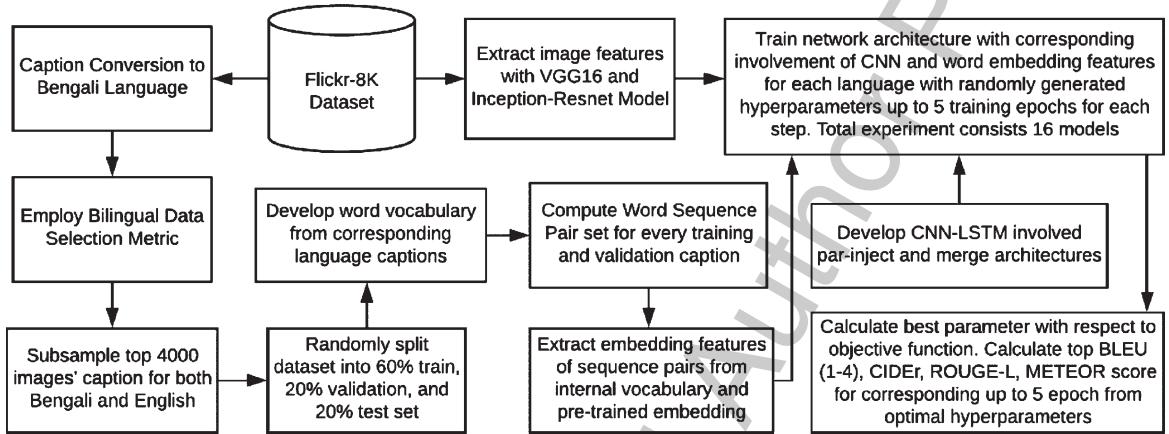


Fig. 2. Experimental workflow summary diagram.

In literature, there are two approaches for automatic captioning, namely bottom-up and top-down approach. According to the first approach, different words are accumulated to correlate with an image and the words form sentences [15]. This approach is easy to implement and able to describe the fine details of an image.

But some features remain ignored at the same time for inconsistent coherency. However, the state-of-art approach is the top-down approach [3, 11] which elects all the visual information through Recurrent Neural Network (RNN). The advantage is that the required parameters for the RNN are obtained from the training dataset [17]. The dramatic revolution in deep learning is incorporated by the Convolutional Neural Network (CNN) with RNN where CNN collects pictorial information from the image and RNN decodes into natural language through incorporating vocabulary-wise embedding from the language model. Figure 1 illustrates sample caption prediction sequence developed through involvement of CNN and LSTM for the context of Bengali language.

Our motivation explicitly aims to address image captioning in Bengali context by addressing a dataset and developing a machine learning model to enrich the amenities in Bengali language. However, considering the scarcity of data and resources, we approach translation of the English captions to Bengali, followed by a manual verification of corresponding subsampled captions by proposed sentence selection metric, and predicting captions for corresponding image as input. In this paper, we propose a baseline CNN-LSTM based Top-Down machine learning model for captioning in the Bengali and compare several captioning techniques for further evaluation of our model performances. Our novelty of the paper lies on the inclusion of a new and completely different language from English language in image captioning model. Figure 2 illustrates the complete experimental flow conducted in this research work. Our major contributions are—

1. Propose Bengali caption dataset through machine translation of Flickr-8K caption set.

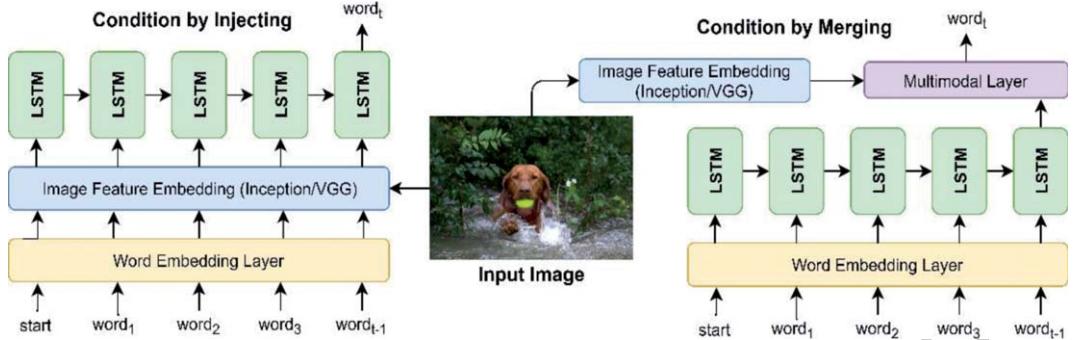


Fig. 3. Illustration of Par-Inject Architecture (left) and Merge Architecture (right).

97 2. Introduce a novel caption-correlation method to
98 eliminate poorly captioned images.
99 3. Develop respective CNN-RNN architecture,
100 train with down-sampled dataset and report a
101 comparative performance study.
102 4. Implement pre-trained word embedding in our
103 context, evaluate and compare experimental
104 results with respect to local embedding.

105 2. Background

106 In this section, we explore several relevant and sig-
107 nificant background works done in this area based on
108 image feature extraction with CNN including novel
109 experiments conducted with non-English languages.
110 We will especially focus on the Bengali language
111 context, mention the limitations and challenges.

112 2.1. Recurrent neural networks involvement

113 In line with CNN features [6], RNN is analyzed
114 in many forms in literature. In [11], the authors pro-
115 posed novel bidirectional mapping between an image
116 and the possible captions. The network model com-
117putes visual representation dynamically using RNN
118 and maximum entropy language model, paves the
119 possibility not only to generate captions but also
120 reconstructs an image from captions. In general, RNN
121 has drawback of capturing a long-range mapping. But
122 sequential mapping needs to cover the long distance
123 for image captioning. One of the possible solutions
124 is inclusion of Long Short-Term Memory (LSTM) as
125 a recurrent network [13, 19]. The proposed model
126 handles variable length input-output, connect the
127 visual convolutional model to LSTM, later fed to
128 a convolutional layer to work with spatial-temporal
129 correlation. LSTM model is further investigated with

130 the encoder-decoder architecture. In [3], the author
131 proposed an encoder CNN and a decoder RNN. The
132 decoder RNN was single layer LSTM and a greedy
133 decoding was used at the time of inference. A dif-
134 ferent approach was taken for an automatic image
135 to captions generator by Ranzato et al. [13] with
136 a sequence level greedy method. In this approach,
137 certain number of words were evaluated for log-
138 likelihood and remaining words were reinforced to
139 optimize arbitrary captioning metrics. In our work,
140 recurrent network involvement is two-fold; first, con-
141 tributing as a sequence generator for captions, later,
142 to encode the appropriate sequences of word embed-
143 ding, instead of directly generating them through
144 hand crafted approach.

145 2.2. Recent progress in non-English language

146 All previously discussed research works were
147 focused to generate English text whilst research on
148 other languages is still in experimental stage. There
149 have been works related to image caption generation
150 in other languages [14], where the authors devel-
151 oped a Japanese version of the MS-COCO caption
152 dataset [14, 30] as well as an accompanying gener-
153 ative model for text descriptions. Recently, one
154 literature proposed Flickr8k-CN [27, 28], a bilin-
155 gual extension to Chinese caption generation from
156 image. Increasingly, several experiments conducted
157 on German [36] and Arabic Language [29], where
158 authors developed an English-German dataset to
159 facilitate the captioning process. However, discussed
160 approaches developed a bilingual dataset toward the
161 task. Addressing the limitation, Lan et al. [28] pro-
162 posed a cross-lingual image captioning including
163 optimized caption fluency through rejection sam-
164 pling over learning process. Recently an initiative
165 [42] was taken regarding Bengali image captioning

166 through introducing a manually annotated image cap-
 167 tion dataset in Bangladeshi context. Though, several
 168 researches conducted in Bengali machine trans-
 169 lation involving several standard rule-based techniques
 170 [12, 20], none are currently state-of-the-art, and out
 171 of context to ours. In this research work, we focus
 172 to achieve the novelty in automatic image caption-
 173 ing in the Bengali language for minimizing the
 174 language barrier with deep learning models. In exper-
 175 iments, state-of-the-art recurrent network model was
 176 employed with recent VGG [5] and Inception [21]
 177 models. We also report optimum hyperparameters for
 178 different models as well competitive performance of
 179 models on the subsampled bilingual Bengali dataset.

180 3. Fundamental algorithm overview: 181 Continuous bag-of-words (CBOW) model

182 This section depicts studies regarding fundamen-
 183 tal algorithms applied for the experiments. In this
 184 section, we will focus on continuous bag-of-words
 185 (CBOW) [26] model, for fixed, lower dimensional,
 186 robust word feature representation.

187 Continuous bag-of-words model [31] was first
 188 introduced by Mikolov et al. [26] as a context-based
 189 target word prediction weight based fully connected
 190 neural network. Briefly, this setup consists of one-hot
 191 encoded vector of the word in the input layer, at the
 192 same time one-hot encoded context word in the output
 193 layer. Fundamentally, between the layers, there exists
 194 a lesser-node-based hidden layer, technically define
 195 the number of fixed dimensions in which the word
 196 should be represented. The complete architecture acts
 197 like a bigram model as demonstrated in their work.
 198 Grave et al. [31] extended standard CBOW model
 199 with position weights, sub-word information. The
 200 model represented the words as bag-of-ngrams, rather
 201 than prior bag-of-words model [2] with the position-
 202 dependent weights. Further, the model was trained on
 203 large dataset from Wikipedia and Common Crawl,
 204 totaling 157 languages worldwide, later released in
 205 FastText [2, 31]. The models¹ consisted a fixed 300-
 206 dimensional feature representation per input word. In
 207 addition, 5-character n -gram, 5-10 negative sampling
 208 window size was adopted during model deployment.
 209 Our research employed their model for both English
 210 and Bengali captions.

211 4. Comprehensive model architecture 212 overview

213 In recent advances of CNN-RNN model, several
 214 successful experiments employed sequential caption
 215 prediction through fusion approach between CNN
 216 and RNN. In recent experiments, image features com-
 217 bined with sentence features, resulted in a caption
 218 related to the given input image. Tanti et al. [22]
 219 generalized the fusion into two sections, inject, and
 220 merge architectures.

221 In inject architecture, image features were involved
 222 directly during RNN sequence generation process,
 223 where merge architecture compounded to image
 224 feature in later stage after word sequence genera-
 225 tion. Their work classified inject architecture into
 226 three stages, init-inject, per-inject, and par-inject.
 227 Init-inject define insertion of visual features as
 228 initial hidden state of the recurrent network. In pre-
 229 inject, visual feature commit as the first word for
 230 sequence model generation, where, in every time
 231 step, image feature is concatenated with words in
 232 par-inject. According to experimental analysis [22],
 233 merge architecture holds visual information intact
 234 while learning linguistic features, where, par-inject
 235 architecture takes advantage of visual information
 236 input for every time step and highly retain visual
 237 information than inject-based architectures. Further-
 238 more, merge architectures require less RNN memory
 239 size, though achieving competitive performance [24].
 240 Considering this, we have adopted merge architec-
 241 ture according to the works [16, 19]. Additionally, we
 242 have used par-inject [11, 23] for having higher perfor-
 243 mance estimation over other inject models. Further,
 244 the selected architectures will be discussed in next
 245 sections.

246 5. Experimental procedure

247 The complete experimental pipeline is divided into
 248 several stages. From feature extraction to final model
 249 architecture, several techniques are employed, which
 250 we will illustrate in the corresponding sections.

251 5.1. Dataset processing

252 This section illustrates the explanation of dataset
 253 used for the experimental work, followed by,
 254 translation-based data conversion facilitating Bengali
 255 language with further processing, and data elimina-
 256 tion approaches conducted for further training of the
 257 models.

¹ <https://fasttext.cc/docs/en/crawl-vectors.html>

257 5.1.1. Dataset description and conversion

258 For the entire experiment, Flickr-8K dataset [1]
 259 is employed, which consists of total 8092 images,
 260 taken from Flickr². Corresponding image ids are split
 261 into training, validation, and testing; where 6000 are
 262 used for training, 1000 for validation and 1000 for
 263 testing. Each image consists of 5 human-annotated
 264 ground truth captions associated, resulting in 40,460
 265 total sentences. After applying the caption tokeniza-
 266 tion, followed by word frequency estimation, most
 267 frequent words consist of verbs, including “in”, “is”,
 268 whilst some of the most frequent nouns include
 269 “dog”, “man”. During experiment, token words for
 270 corresponding image features are embedded into a
 271 vector set and fed. To conduct the experiment in Ben-
 272 gali language, we develop Bengali caption-involved
 273 bilingual dataset “Flickr8k-BN” from the existing
 274 English captions. To adapt the translation process,
 275 Google Translate³ is employed to convert English
 276 sentences to Bengali, resulting a translation set con-
 277 sisting of 40,460 captions. In caption sentences, most
 278 frequent Bengali words include “হয়”, “মধ্য”, “উপর”
 279 as verbs, “কুকুর”, “মানুষ” as nouns. Figure 4 illustrates
 280 dataset word frequency histogram for both English
 281 and translated Bengali sentences, respectively. The
 282 machine translation weakness is observed from the
 283 figure as Bengali contains higher word frequency
 284 along with some English word involvement in trans-
 285 lation. Considering above issues, we have applied a
 286 novel caption selection metric to reduce frequency
 287 rate and machine translation error at an acceptable
 288 scale.

289 5.1.2. Bilingual caption selection metric

290 Upon translation, through a manual intervention,
 291 we observe, machine translation results in ambigu-
 292 ous words, including actual context understanding
 293 gap for the target language sentences. This is still an
 294 unsolved problem in the natural language processing
 295 domain. To overcome the limitation, initially, unique
 296 token words are carefully interpreted, which result
 297 in observation that, several close-to words are char-
 298 acterized as independent tokens due to some extra
 299 characters involved in respective words. To over-
 300 come, we have adopted a publicly available Bengali
 301 rule-based stemmer, which is not adequate for the
 302 task, resulting in irrelevant contextual words, e.g.,
 303 for input “একটি কালো ছেলে বা লর মধ্যে বসা হয়”, corre-
 304 sponding output is “এক কালো ছাল বালির মধ্য বসা হয়”,

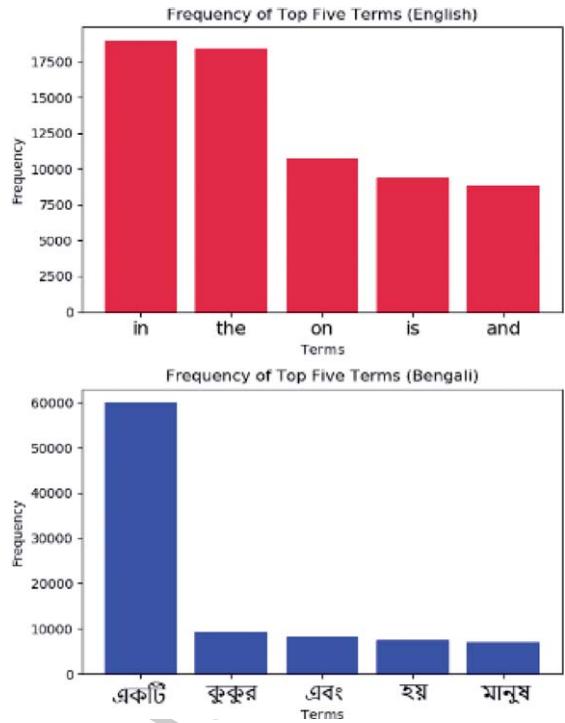


Fig. 4. Word frequency distribution English (top), Bengali (bottom).

305 which an out-of-the-context and non-grammatical
 306 sentence. As per being complex [39], stemming Ben-
 307 gali language leads to another research, where root
 308 words should be analyzed manually. The quality of
 309 rule-based stemmer [39] could be manually predicted
 310 due to having set of conditional statements. From sev-
 311 eral word pair, output result becomes relatively easy
 312 to infer. In our dataset, verification of 40,460 sen-
 313 tences according to the image and English sentence
 314 would be a tedious task. To overcome the limita-
 315 tion, we introduce a novel approach for determining
 316 top k images containing best captions having cor-
 317 relation between captions per image, and scale of
 318 consistent cross-match among the captions. At first
 319 stage, each Bengali sentence is represented into fixed
 320 dimensional word embedding through FastText [31]
 321 pre-trained model.

322 Later, for each caption, the average of absolute
 323 cross-distance match is computed, followed by a vec-
 324 tor summation. The same approach has been applied
 325 to estimate match with respect to English language
 326 captions. Equation 1 illustrates the equation for com-
 327 puting captioning score for an image. Here, i and j
 328 are corresponding indices of n number of caption fea-
 329 tures, X . Both iterations run till n , where each would

² <https://www.flickr.com>

³ <https://translate.google.com.bd>

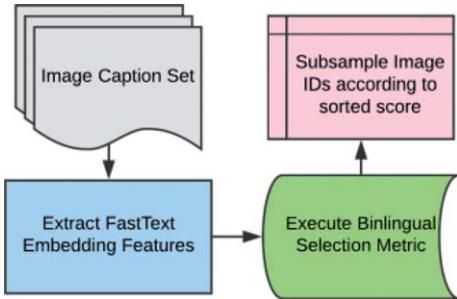


Fig. 5. Sample illustration of bilingual data selection metric from image caption set toward sorted images.

have a one to zero result, and the summation term goes till the last stage of k number of image selection.

$$Score_k = \sum_{i=1}^n \sum_{j=1}^n |X_i - X_j| \quad (1)$$

Later, the computed $Score$ for every image are sorted in ascending order, where lower score defines better semantic caption distance. In summary, this lower-score approach illustrates how strong captions are for each image (inter-connected in cross-relationship), a largely important term for our experimental process. A sample workflow illustration has been demonstrated in Fig. 5, where the image captions are put forward into sorted ranking task depending on FastText embedding features. Regarding scoring techniques, Table 1 illustrates a sample caption out of 5 from images having scores highest and lowest, which responds to image having good or bad caption quality for both languages separately. Upon careful observation, we can conclude, for both English, and Bengali, the bad sample caption fails to illustrate the scene properly, due to lack of proper verification. Besides, there is an addition of poor machine translation in Bengali language. Later, the subsampled dataset for both has been employed in later sections.

5.2. CNN feature extraction

Currently CNN [6] architecture, with variations used in object recognition tasks with several standard image datasets [35]. The involved trained weights tend to have highly discriminative sampled and optimal features, resulting in competitive accuracy computation [5, 21]. Rather training a distinct new model, we prefer adaptation of selective and high-performing pre-trained models. We have employed Inception-ResNet [21] and VGG-16 [5] models. Both architectures are trained on ImageNet dataset [35], emerged as high-performing object recognition models [7]. Undoubtedly, the prior network has higher depth, few hundred layers, compared to VGG-16. After removal of last classification layer, Inception-ResNet returns 1536 whilst VGG-16 results in 4096-dimensional feature representative vectors. However, in later steps, vectors are compressed to comply with word sequence vector, and hyper parameter optimization-oriented experiments.

5.3. Word sequence pair generation

Prior to process image in the caption generation scheme, sentence representation into sequence pair combination is another important and challenging task in our research. In general, an RNN model learns input prefix pair toward prediction of the best possible candidate through probabilistic SoftMax function. However, the training process is kept through fixed input-output RNN sequence pair model, led by the largest number of training sentence length. For example, if we have a sentence with word length 10 whilst max training sentence length can hold 30 words. To accommodate this, the lower sequence is padded with zeros up to highest length. Then, an input-output pair from group of words is computed for training process. However, according to some recent works [3, 4], for training with higher number of examples, single-line padding is not a good choice, rather

Table 1
First caption with scores; English (left), Bengali (right)

	English	Score	Bengali	Score
Good Sample	Black dog in the water with tennis ball in his mouth	0.14	একটি বাদামী এবং সাদা কুকুর একটি লাল এবং হলুদ মেরু জামিং হয়	0.13
Bad Sample	Mountain landscape	0.45	দুইজন লোক একটি মুখ্যমুখ্য মুখ্যমুখ্য	0.50

sequence pair combination of corresponding caption sentences shows better input-output pair representation. As per the suggestion, we have developed a fractioned input-output word sequence pair for training purpose, e.g. a sentence with n number of word would have $n + 1$ sequence pair considering an extra start and end token as identifier during training. Further, zero padding is performed on the sequences followed by pairing with image features depending on architecture mechanisms. Prior discussion is done on the data selection metric, and top 4000 images are selected as experimental set. The known vocabulary has been computed from training set as unique word tokens. Among them, Bengali language consist of 6410 unique tokens whilst English has 4667. However, English has maximum 34 words length training sentence and 21 for Bengali. Further, every training sentence are represented as arrays consisting vocabulary index for corresponding words, followed by zero padding according to the language's sentence length. Embedding of training pairs are performed through network whilst pre-embedded training pair consists of sets of vectors instead of word indices. Table 2 illustrates a sample input-output pair for Bengali sentence where, for image X , and sample word pair Y , resultant word is Z . Further, corresponding word indices are evolved as sequences, and later zero padded according to the maximum length. The table illustrates discussed par-inject model architecture [22]. However, merge model involves same word sequence pairs except image conditioning in each sequence [16, 19]. During generation process, RNN model would result in single word from input condition and follow recursively until the end token prediction.

5.4. Pre-trained word embedding involvement

The experiment consists two-fold word embedding. Basic embedding structure is derived from the internal vocabulary computed from training set,

Table 2
Sentence sequence model illustration

X (image feature)	Y (input word)	Z (output word)
Feature	start	একটি
Feature	start, একটি	ছেলে
Feature	start, একটি, ছেলে	দাঁড়িয়ে
Feature	start, একটি, ছেলে, দাঁড়িয়ে	আছে
Feature	start, একটি, ছেলে, দাঁড়িয়ে, আছে	end

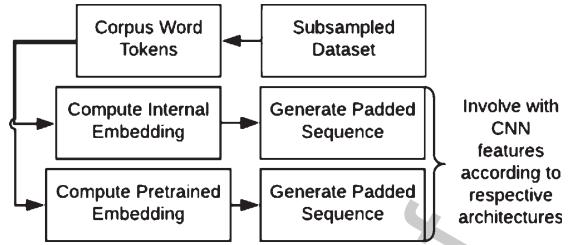


Fig. 6. Sample illustration of word embedding scenario and padding before being fed to network architecture.

represented into vectors prior to being given as input to recurrent network. The embedding models are trained as a part of the experiment. However, there exists a significant token gap in vocabulary, resulting in poor embedding representation through vectors resulting lower number of correlations learning throughout the process. To deal this, we introduce pre-compiled word embedding model to facilitate word representation process. As per discussion in Section 3, CBOW structure is represented according to fundamental vector computation process. For experiment, we have adopted FastText [2, 31] library’s models, a robust and widely used word representation model trained on large vocabulary set across several languages and is available for both Bengali and English language. For initiating, the features are computed for each caption, representing a sentence as fixed-dimensional array. This approach is more acceptable where each input representation is robust, as per being trained on billions of tokens whilst being more efficient because no further embedding-related training is required before input to the recurrent network. Figure 6 illustrates embedding workflow that involves visual features for specific architecture structure and caption generation.

5.5. Model architecture development

This section introduces architecture development process according to prior discussion. It includes preceding illustration about the fundamental feature processing which includes visual and linguistic representation. Initially, we adopt two architectures. Later, a small modification has been performed to facilitate pre-compiled word embedding.

Par-Inject Architecture defines recurrent network involvement while conditioning image with word feature during input at every time step. In this stage, at first layer with dropout is introduced followed by an embedding layer word feature pro-

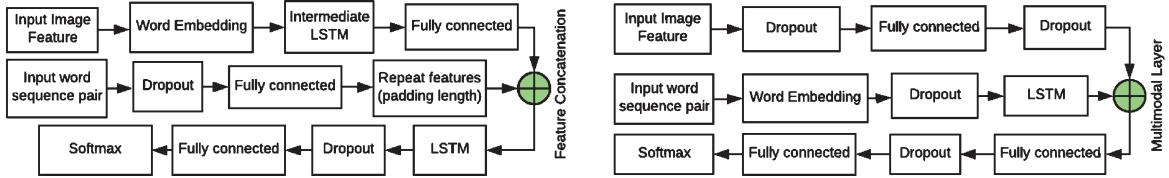


Fig. 7. Par-inject (left) and Merge (right) architecture illustration based experimental workflow.

cessing. An extra fully connected layer is added after image input layer to maintain same dimension of language and word features. Later, image features are repeatedly concatenated in multimodal layer with corresponding word embedding features computed for each time step. Then, processed representation is used as input to the LSTM layer regarding following sequence prediction in output scheme. Further, output feature vector goes through the fully connected layer to match training vocabulary dimension. Finally, best candidate word is selected through probabilistic SoftMax function. Figure 7 visualizes high-level architecture of par-inject.

Merge Architecture conditions image by involving corresponding visual feature with final output from recurrent network throughout word prediction process. The fundamental architecture principle demonstrates, image is never used in recurrent neural network whilst the word embedding are directly involved in further sequence generation process, and the output sequence is conditioned with image for next word prediction task, resulting in the visual feature remaining intact compared to par-inject [22], where, visual feature is directly incorporated in recurrent network's sequence prediction process. Embedding layer feature vector discussed in par-inject model are passed to an LSTM network resulting in final prediction. Further, the image feature is down sampled to match word prediction output, followed by a multimodal layer concatenating the output, and a dense layer with identical dimension to vocabulary. Figure 7 illustrates the developed merge model. Here, the green component stands for multimodal layer which concatenates CNN and LSTM features prior to prediction. For both architectures, embedding layer is pre-computed, requiring no further training as per FastText [2] embedding involvement.

5.6. Hyperparameter optimization

Word Embedding Dimension is used to represent each word into fixed dimensional vector to facilitate entire learning process of network. In this experiment,

an internal word representation technique is involved from fixed vocabulary set of both datasets. However, in case of pre-trained word embedding based training [31], we skip internal embedding, replacing it with a linear activation. Fixed dimension parameters e.g., 100, 200, and 300 are set for local vocabulary experiment for learning word embedding. Later, it is regularized with an extra hidden layer, activation function, and dropout [8].

Size of Layers usually impacts networks over feature representation [22] by influencing performance. Variable layer sizes could be used for visual and linguistic feature concatenation, optimization-based tasks e.g., deciding output feature dimension from LSTM. Understanding layer size is essential in addition to other parameters to prevent overfitting the entire network. In experiment, size of layers in feature reduction of CNN and LSTM is (128, 256, 512), and LSTM network hidden parameter and final representation (64, 128, 256), are kept in the three constrained ranges.

Dropout [8] essentially prevents a neural network from overfitting. After variable length layer size of fully connected, or LSTM layers, additional dropout layer is assigned. The parameter ranges from 0.3 to 0.5.

LSTM Projection Dimension is highly devised in merge architecture [16, 19]. There, two-fold network, followed by a later multimodal layer concatenated two features resulted the next word prediction. As per the architecture, word feature contributes self-conditioned word sequence prediction. Regarding the reason, projection dimension of each LSTM output state was taken care of to evaluate better representative network.

Quantum random method [41] is used to generate hyperparameters with 3% of samples for further experimental analysis according to the library implementation of Talos⁴ used in our experiments. The performance for each candidate combination is recorded for 5 epochs. From the best performing

⁴ <https://github.com/autonomio/talos>

model combinations according to objective function is adopted. In addition, our experiment has entirely focused on fixed architecture with variable parameters over the variable architecture that affect main standard, e.g. addition of more layers, or change in visual-linguistic feature concatenation type.

6. Result analysis

This section will discuss the experimental results found from our trained model described in preceding sections. We also discuss about optimal hyperparameters and caption quality evaluation with different metrics.

6.1. Optimal hyperparameters

Regarding model development and experimental stage, there already evolved several parameters. The best-performing hyperparameters for Inception-Resnet and VGG-16 visual features are illustrated in Table 3. In general, the merge architecture is simple and lower number of parameters are involved for tuning whilst par-inject architecture requires higher training with larger model size. It is interesting to

note that, inception model requires higher CNN-LSTM feature pair compared to VGG and merge architecture that require higher dimension due to multimodal layer ensembled representation. Regarding word vocabulary dimension, inject architecture takes advantage involving CNN with word embedding pair, requiring lower dimensional representation compared to merge architecture. Overall, inception requires lower vocabulary due to having high object recognition. Multimodal layer of the merge architecture remains identical for VGG and varies for Inception-Resnet, having good performance with ELU [34]. For Bengali language, the linguistic representation dimension tends to be higher compared to English, determining a complex language scheme towards more representation attention. A higher regularization is required in Bengali pre-trained model. Another interesting point to note that, local vocabulary embedding excluding some merge architectures prefer ELU as activation function, independent of language, defining linguistic models require some non-linearity other than straight linear activation function like ReLU. However, from prior analysis, two decisions can be taken: Inception-Resnet architecture influences LSTM model compared to VGG more efficiently, due to having more

Table 3
Obtained optimal hyperparameters for CNN model and discussed architectures

CNN Models	Hyperparameter-wise Sections	Par-Inject Architecture				Merge Architecture			
		Bengali	English	Bengali (PTE)	English (PTE)	Bengali	English	Bengali (PTE)	English (PTE)
Inception-Resnet Model [29]	Image-LSTM dense	512	256	128	256	256	128	512	512
	Image dropout	0.3	0.3	0	0.3	0	0	0	0.3
	Image activation	ReLU	ReLU	ELU	ReLU	ELU	ELU	ELU	ReLU
	Word Vocab. Size	64	128	—	—	128	64	—	—
	Word LSTM size	64	256	128	64	512	512	128	128
	Word LSTM activ.	ELU	ReLU	ReLU	ReLU	ReLU	ELU	ReLU	ELU
	Word LSTM dropout	0	0	0.3	0.5	0.3	0.3	0.3	0
	Inject LSTM size	256	64	128	128	—	—	—	—
	Inject LSTM dropout	0	0	0.3	0	—	—	—	—
	Inject LSTM activ.	ELU	ELU	ELU	ReLU	—	—	—	—
	Multimodal activ.	—	—	—	—	256	128	128	128
	Multimodal size	—	—	—	—	ELU	ELU	ELU	ELU
VGG-16 Model [6]	Image-LSTM dense	128	128	256	128	256	128	512	256
	Image dropout	0	0.3	0	0.3	0.3	0	0.5	0.3
	Image activation	ELU	ReLU	ReLU	ReLU	ELU	ELU	ReLU	ELU
	Word Vocab. Size	256	64	—	—	128	64	—	—
	Word LSTM size	128	128	128	128	256	256	128	512
	Word LSTM activ.	ReLU	ReLU	ELU	ELU	ReLU	ELU	ELU	ReLU
	Word LSTM dropout	0	0.5	0.3	—	0.5	0.3	0.5	0.3
	Inject LSTM size	128	256	128	64	—	—	—	—
	Inject LSTM dropout	0	0	0	0.3	—	—	—	—
	Inject LSTM activ.	ELU	ELU	ELU	ELU	—	—	—	—
	Multimodal size	—	—	—	—	256	128	256	128
	Multimodal activ.	—	—	—	—	ELU	ELU	ELU	ELU

587 accurate, lower-dimensional feature representation.
 588 Besides, Bengali language model learning process is more complex than English. In addition,
 589 a higher regularization is required in Bengali pre-
 590 trained embedding for obtaining higher dimensional
 591 representation including other architectures than
 592 English.

593 The implication is, par-inject requires more
 594 memory compared to merge model with more hyper-
 595 parameter variation and visual-linguistic feature in
 596 each time step whilst merge requires least memory
 597 through learning visual -linguistic features sepa-
 598 rately.

600 6.2. Evaluation of caption quality

601 Optimal hyperparameters found for each archi-
 602 tecture is employed in experimental analysis with
 603 5 epochs, from where, highest scored epoch with
 604 respect to objective scoring mechanism is selected.
 605 In following sections, several highly used scoring
 606 approaches that includes Microsoft COCO [30] Eval-
 607 uation Toolkit is presented. A sample illustration
 608 regarding 1 vs. 4 captions scoring from a random
 609 test image has been demonstrated in Table 4.

610 6.2.1. Bilingual evaluation understudy (BLEU)

611 BLEU [10] involves variable n-gram weighted
 612 average to compute difference between actual (refer-
 613 ence) and predicted (hypothesis) sentence, resulting
 614 in promising scoring compared to human judgment.
 615 From illustration given in Table 4, we observe that,
 616 BLEU scores are biased toward small sentences

617 for higher scores, including some inefficient esti-
 618 mation for higher values of precision. For Bengali
 619 language, BLEU scoring tightly bounds length and
 620 vocabularies.

621 6.2.2. Metric for evaluation of translation with 622 explicit ordering (METEOR)

623 In the evaluation process, METEOR [32] cal-
 624 culation is performed. This metric is based on
 625 unigram matching between reference and hypothe-
 626 sis sentences using the harmonic mean of unigram
 627 precision and recall. To evaluate the score over the
 628 dataset, we take the aggregation of unigram preci-
 629 sion, unigram recall and penalty of harmonic mean,
 630 and later combine according as authors' suggestion
 631 reported in [32]. In Table 4, METEOR performance
 632 is more accurate in cross-match scenario, however,
 633 as token-based approach, it is diverse and cor-
 634 rect context sentences is underestimated in some
 635 cases.

636 6.2.3. Recall-Oriented Understudy for Gisting 637 Evaluation (ROUGE)

638 We additionally involve state-of-the-art ROUGE_L
 639 [33], a measure based on the Longest Common
 640 Subsequence (LCS). The score is computed with
 641 an F-measure according to length of the LCS
 642 between reference caption and hypothesis cap-
 643 tion. Considering this illustration, due to counting
 644 subsequence, performance on English captions in
 645 Table 4 is higher than Bengali, which is more
 646 complex.

Table 4
 Sample cross-scoring evaluation result demonstrated for English and Bengali captions from a random test image

Caption [English]	BLEU				METEOR	ROUGE _L	CIDER
	1	2	3	4			
Young asian woman wearing long shorts and gray collared tshirt is sitting on wooden bench	0.47	0.36	0.31	0.27	0.34	0.55	0.00
Girl with black purse sitting on wooden bench	0.87	0.79	0.68	0.50	0.41	0.69	0.00
Woman sits alone on park bench in the sun	0.44	0.00	0.00	0.00	0.20	0.44	0.00
Woman with handbag is sitting on wooden bench	0.87	0.79	0.67	0.59	0.37	0.67	0.00
Young woman with black purse sits on wooden bench	1.00	0.79	0.56	0.00	0.45	0.71	0.00
Caption [Bengali]							
একটি এশিয়ান মহিলার ক্যামেরা দিকে পোঁছেছে যে একটি এশিয়ান শিশুর অধিষ্ঠিত	0.45	0.21	0.00	0.00	0.39	0.41	0.00
একটি প্রাচ মেয়ে তার অস্ত্র একটি শিশুর অধিষ্ঠিত হয়	0.57	0.26	0.00	0.00	0.27	0.39	0.00
একটি হাসিখুশি এশিয়ান মহিলা তার শিশুকে ধরে রেখেছে	0.66	0.41	0.00	0.00	0.32	0.31	0.00
একটি হাসিখুশি নারী সাদা পোশাক পরা একটি শিশু যারা তার হাত পোঁছেছেন	0.42	0.27	0.00	0.00	0.36	0.31	0.00
মহিলাটি একটি শিশু ধরে রেখেছে এবং একটি ছবির জন্য দাঁড়িয়ে আছে	0.45	0.30	0.00	0.00	0.34	0.32	0.00

Table 5
Evaluation metrices result with several experimental architectures for respective CNN models

CNN Models	Experimental Model Architecture	BLEU				METEOR	ROUGE _l	CIDER
		1	2	3	4			
Inception	Inject Bengali	0.55	0.38	0.27	0.15	0.32	0.51	0.22
	Inject English	0.54	0.30	0.22	0.12	0.21	0.44	0.30
	Inject PTE Bengali	0.50	0.34	0.25	0.13	0.31	0.48	0.19
	Inject PTE English	0.53	0.32	0.21	0.13	0.22	0.46	0.40
	Merge Bengali	0.62	0.45	0.33	0.22	0.34	0.54	0.35
	Merge English	0.59	0.37	0.28	0.16	0.23	0.49	0.46
	Merge PTE Bengali	0.61	0.44	0.32	0.18	0.33	0.53	0.37
	Merge PTE English	0.60	0.38	0.29	0.17	0.24	0.50	0.45
VGG16	Inject Bengali	0.55	0.37	0.26	0.13	0.33	0.49	0.20
	Inject English	0.50	0.30	0.22	0.12	0.21	0.45	0.33
	Inject PTE Bengali	0.37	0.25	0.19	0.09	0.27	0.42	0.13
	Inject PTE English	0.56	0.33	0.24	0.13	0.21	0.46	0.31
	Merge Bengali	0.58	0.39	0.28	0.15	0.33	0.51	0.26
	Merge English	0.55	0.34	0.26	0.14	0.22	0.47	0.37
	Merge PTE Bengali	0.56	0.39	0.27	0.13	0.32	0.50	0.23
	Merge PTE English	0.56	0.34	0.26	0.15	0.22	0.46	0.38

6.2.4. Consensus-based image description evaluation (CIDEr)

CIDEr [25] involves Term Frequency Inverse Document Frequency (TF-IDF) weighing for each n -gram. The evaluation metric we have used CIDEr-D [38], a modification to CIDEr to prevent scoring in case of poorly judged caption by humans is given a high score by an evaluation metric. Though being a corpus-based metric, for cross-relation illustration in Table 4, CIDEr results in zero score, since it expects a more robust and larger dataset.

6.3. Discussion and decision

The metrics in Table 5 illustrate the performance of several architectures involved in previously developed dataset experiments. Considering the optimal hyperparameters with CIDEr as the objective function, corresponding evaluation metrics are computed. From CNN feature extraction scheme, this is clearly observed that Inception-Resnet influence higher performance than VGG16 in all architectures, meaning it is a highly discriminative state-of-the-art feature extraction model. Interesting observation regarding the architecture is, for both Bengali and English language, merge architecture outperform inject regarding all evaluation metrics. However, another observation involves internal or external vocabulary enabled word embedding, where we find mixed observation for the languages. Considering English language, the external pre-trained word embedding representation dominates internal vocabulary due to having diverse vocabulary for robust representation whilst in the metrics, internal vocab-

Caption: একটি নেমশ কুকুর সবুজ ঘাস মাধ্যমে চলমান হয়

Caption: একটি যুবতী একটি গ্রন্থ একটি ছবির কাটো প্রহণ

Fig. 8. Caption with merge model for Bengali language test set.

ulary shows higher result for Bengali language. For Bengali, internal vocabulary conforms to more token patterns compared to pre-trained embedding model, resulting in more robust word representation in Bengali context. Figure 8 demonstrates generated captions from random test images with good performing merge model. This result significantly derives that, current Bengali pre-trained embedding model still requires improvement with diverse set of language tokens. If we consider the intra-language scoring comparison, except CIDEr, metrics for Bengali outperform English language; which indicates higher score estimation for successful selection metric for this language. However, though being a corpus-based metric, CIDEr tends to score English higher comparatively for having lower corpus sentence diversity in Bengali language.

7. Conclusion

This research connects Bengali language in image captioning research by introducing a standard experimental analysis and provides a comparative study

of recent advancements and techniques currently used in this area. Firstly, we address limitation of resources in Bengali language which has high linguistic complexity and develop a machine translation dataset. We introduce then a novel bilingual sentence selection metric aiming to subsample poorly translated sentence from experiment data set. We further show that unlike English, due to obtaining lower vocabulary-based corpus, Bengali language does not prefer pre-trained word embedding. This paves an open door for further research on modeling Bengali natural language feature extraction with robust representation unveiling improved captions. We establish a baseline experiment scheme for languages other than English toward designing a universal, language-independent image captioning system.

716

References

- [1] M. Hodosh, P. Young and J. Hockenmaier, Framing image description as a ranking task: Data, models and evaluation metrics, *Journal of Artificial Intelligence Research* **47** (2013), 853–899.
- [2] A. Joulin, E. Grave, P. Bojanowski and T. Mikolov, Bag of tricks for efficient text classification, arXiv preprint arXiv:1607.01759, 2016.
- [3] O. Vinyals, A. Toshev, S. Bengio and D. Erhan, Show and tell: A neural image caption generator, in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2015, pp. 3156–3164.
- [4] M. Tanti, A. Gatt and K.P. Camilleri, What is the role of recurrent neural networks (rnns) in an image caption generator? arXiv preprint arXiv:1708.02043, 2017.
- [5] K. Simonyan and A. Zisserman, Very deep convolutional networks for largescale image recognition, arXiv preprint arXiv:1409.1556, 2014.
- [6] A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in *Advances in Neural Information Processing Systems*, 2012, pp. 1097–1105.
- [7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual recognition challenge, *International Journal of Computer Vision* **115**(3) (2015), 211–252.
- [8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, *The Journal of Machine Learning Research* **15**(1) (2014) 1929–1958.
- [9] T. Deb, A. Arman and A. Firoze, Machine Cognition of Violence in Videos Using Novel Outlier-Resistant VLAD, in *2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)*, 2018, pp. 989–994.
- [10] K. Papineni, S. Roukos, T. Ward and W.-J. Zhu, Bleu: A method for automatic evaluation of machine translation, in *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics*, 2002, pp. 311–318.
- [11] X. Chen and C. Lawrence Zitnick, Mind’s eye: A recurrent visual representation for image caption generation, in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2015, pp. 2422–2431.
- [12] S. Bal, S. Mahanta, L. Mandal and R. Parekh, Bilingual machine translation: English to bengali, in *Proceedings of International Ethical Hacking Conference 2018*, Springer, 2019, pp. 247–259.
- [13] M. Ranzato, S. Chopra, M. Auli and W. Zaremba, Sequence level training with recurrent neural networks, arXiv preprint arXiv:1511.06732, 2015.
- [14] T. Miyazaki and N. Shimizu, Cross-lingual image caption generation, in *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2016, pp. 1780–1790.
- [15] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A.C. Berg and T.L. Berg, Baby talk: Understanding and generating image descriptions, in *Proceedings of the 24th CVPR, Citeseer*, 2011.
- [16] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang and A. Yuille, Deep captioning with multimodal recurrent neural networks (m-rnn), arXiv preprint arXiv:1412.6632, 2014.
- [17] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel and Y. Bengio, Show, attend and tell: Neural image caption generation with visual attention, in *International Conference on Machine Learning*, 2015, pp. 2048–2057.
- [18] P. Bhowmik, M.J.H. Pantho, M. Asadina and C. Bobda, Design of a reconfigurable 3d pixel-parallel neuromorphic architecture for smart image sensor, in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 2018, pp. 673–681.
- [19] J. Mao, W. Xu, Y. Yang, J. Wang and A.L. Yuille, Explain images with multimodal recurrent neural networks, arXiv preprint arXiv:1410.1090, 2014.
- [20] S. Chakraborty, A. Sinha and S. Nath, A bengali-sylheti rule-based dialect translation system: Proposal and preliminary system, in *Proceedings of the International Conference on Computing and Communication Systems*, Springer 2018, pp. 451–460.
- [21] C. Szegedy, S. Ioffe, V. Vanhoucke and A.A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, in *AAAI*, 42017, p. 12.
- [22] M. Tanti, A. Gatt and K.P. Camilleri, Where to put the image in an image caption generator, *Natural Language Engineering* **24**(3) (2018), 467–489.
- [23] J. Devlin, H. Cheng, H. Fang, S. Gupta, L. Deng, X. He, G. Zweig and M. Mitchell, Language models for image captioning: The quirks and what works, CoRR abs/1505.01809, 2015.
- [24] Q. You, H. Jin, Z. Wang, C. Fang and J. Luo, Image captioning with semantic attention, *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
- [25] R. Vedantam, C.L. Zitnick and D. Parikh, Cider: Consensus-based image description evaluation, *2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015.
- [26] T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient estimation of word representations in vector space, CoRR abs/1301.3781, 2013.
- [27] X. Li, W. Lan, J. Dong and H. Liu, Adding chinese captions to images, in *Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICMR ’16*, ACM, New York, NY, USA, 2016, pp. 271–275.
- [28] W. Lan, X. Li and J. Dong, Fluency-guided cross-lingual image captioning, in *Proceedings of the 25th ACM Inter-*

755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

821 *national Conference on Multimedia, MM '17*, ACM, New
822 York, NY, USA, 2017, pp. 1549–1557.

823 [29] V. Jindal, Generating image captions in arabic using root-
824 word based recurrent neural networks and deep neural
825 networks, *Proceedings of the 2018 Conference of the North*
826 *American Chapter of the Association for Computational*
827 *Linguistics: Student Research Workshop*, 2018.

828 [30] X. Chen, H. Fang, T. Lin, R. Vedantam, S. Gupta, P. Dollár
829 and C.L. Zitnick, Microsoft COCO captions: Data collection
830 and evaluation server, CoRR abs/1504.00325, 2015.

831 [31] E. Grave, P. Bojanowski, P. Gupta, A. Joulin and T.
832 Mikolov, Learning word vectors for 157 languages, CoRR
833 abs/1802.06893, 2018.

834 [32] M. Denkowski and A. Lavie, Meteor universal: Language
835 specific translation evaluation for any target language, *Pro-
836 ceedings of the Ninth Workshop on Statistical Machine
837 Translation*, 2014.

838 [33] C.-Y. Lin, Rouge: A package for automatic evaluation of
839 summaries, *Text Summarization Branches Out*, 2004.

840 [34] D. Clevert, T. Unterthiner and S. Hochreiter, Fast and accu-
841 rate deep network learning by exponential linear units (elus),
842 CoRR abs/1511.07289, 2015.

843 [35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-
844 Fei, Imagenet: A large-scale hierarchical image database,
845 in *Computer Vision and Pattern Recognition, 2009 CVPR
846 2009 IEEE Conference on*, IEEE, 2009, pp. 248–255.

847 [36] D. Elliott, S. Frank, K. Sima'an and L. Specia, Multi30k:
848 Multilingual english-german image descriptions, CoRR
849 abs/1605.00459, 2016.

850 [37] C. Callison-Burch, M. Osborne and P. Koehn, Re-evaluation
851 the role of bleu in machine translation research, in *11th
852 Conference of the European Chapter of the Association for
853 Computational Linguistics*, 2006.

854 [38] D. Elliott and F. Keller, Image description using visual
855 dependency representations, in *Proceedings of the 2013
856 Conference on Empirical Methods in Natural Language
857 Processing*, 2013, pp. 1292–1302.

858 [39] S. Dasgupta and V. Ng, Unsupervised morphological pars-
859 ing of bengali, *Language Resources and Evaluation* **40**(3-4)
860 (2006), 311–330.

861 [40] M.R. Mahmud, M. Afrin, M.A. Razzaque, E. Miller
862 and J. Iwashige, A rule based bengali stemmer, in *Advances in Computing, Communications and Informatics
863 (ICACCI, 2014 International Conference on*, IEEE, 2014,
864 pp. 2750–2756.

865 [41] M. Herrero-Collantes and J.C. Garcia-Escartin, Quantum
866 random number generators, *Reviews of Modern Physics*
867 **89**(1) (2017), 015004.

868 [42] M. Rahman, N. Mohammed, N. Mansoor and S. Momen,
869 Chittron: An automatic bangla image captioning system,
870 arXiv preprint arXiv:1809.00339, 2018.

871