

Contributions on Solving COVID-19 Crisis with Reinforcement Learning

Presented by Francesco Mikulis-Borsoi & Tonmoay Deb

May 2021

Implementing SR-MILP in Python

- ▶ Team Goal: Generate Dataset and Implement the SR-MILP to check if the output is consistent with the RCraam code.

Implementing SR-MILP in Python

- ▶ Team Goal: Generate Dataset and Implement the SR-MILP to check if the output is consistent with the RCraam code.
- ▶ Number of states: 10, Number of action: 2, Number of outcomes: 10

Implementing SR-MILP in Python

- ▶ Team Goal: Generate Dataset and Implement the SR-MILP to check if the output is consistent with the RCraam code.
- ▶ Number of states: 10, Number of action: 2, Number of outcomes: 10
- ▶ State formulation:

% infected (of susceptible)	State
[0, 1]	0
[1, 2]	1
[2, 3]	2
[3, 4]	3
[4, 5]	4
[5, 6]	5
[6, 7]	6
[7, 8]	7
[8, 9]	8
[9, 100]	9

Implementing SR-MILP in Python

- ▶ Actions (policy): $0 \rightarrow \text{OPEN}$; $1 \rightarrow \text{CLOSE}$
- ▶ The reward formulation strategy:
 - ▶ if closed and $< 5\%$ sick: -0.5 # don't close pre-emptively (economy?)

Implementing SR-MILP in Python

- ▶ Actions (policy): $0 \rightarrow \text{OPEN}$; $1 \rightarrow \text{CLOSE}$
- ▶ The reward formulation strategy:
 - ▶ if closed and $< 5\%$ sick: -0.5 # don't close pre-emptively (economy?)
 - ▶ if closed and $\geq 5\%$ sick: 0.0 # close if many people are sick!

Implementing SR-MILP in Python

- ▶ Actions (policy): $0 \rightarrow \text{OPEN}$; $1 \rightarrow \text{CLOSE}$
- ▶ The reward formulation strategy:
 - ▶ if closed and $< 5\%$ sick: -0.5 # don't close pre-emptively (economy?)
 - ▶ if closed and $\geq 5\%$ sick: 0.0 # close if many people are sick!
 - ▶ if open and $5 \geq \%$ sick: -0.5 # don't keep open if many people are sick.

Implementing SR-MILP in Python

- ▶ Actions (policy): $0 \rightarrow \text{OPEN}$; $1 \rightarrow \text{CLOSE}$
- ▶ The reward formulation strategy:
 - ▶ if closed and $< 5\%$ sick: -0.5 # don't close pre-emptively (economy?)
 - ▶ if closed and $\geq 5\%$ sick: 0.0 # close if many people are sick!
 - ▶ if open and $5 \geq \%$ sick: -0.5 # don't keep open if many people are sick.
 - ▶ if open and 5% sick: depending on how much the number of cases increased, $reward \in [0, -0.4]$

Implementing SR-MILP in Python

- ▶ Actions (policy): $0 \rightarrow \text{OPEN}$; $1 \rightarrow \text{CLOSE}$
- ▶ The reward formulation strategy:
 - ▶ if closed and $< 5\%$ sick: -0.5 # don't close pre-emptively (economy?)
 - ▶ if closed and $\geq 5\%$ sick: 0.0 # close if many people are sick!
 - ▶ if open and $5 \geq \%$ sick: -0.5 # don't keep open if many people are sick.
 - ▶ if open and 5% sick: depending on how much the number of cases increased, $reward \in [0, -0.4]$
- ▶ Outcome: It worked! It found the optimal policy as it did in the Rcraam code. Also, it adapts to multiple outcomes now.

DataSet Table

Table: Table used for the input to the SR-MILP

idstatefrom	idaction	idstateto	probability	reward	idoutcome
0	0	0	0.5	-0.5	0
0	0	1	0.5	-0.5	0
0	0	0	0.1	-0.5	1
0	0	1	0.1	-0.5	1
0	0	0	1	-0.5	2
0	0	1	0	-0.5	2
0	0	0	1	-0.5	3
0	0	1	0	-0.5	3
0	0	0	0.1	-0.5	4
0	0	1	0.1	-0.5	4
0	0	0	1	-0.5	5
0	0	1	0	-0.5	5

Dataset Table (Continued)

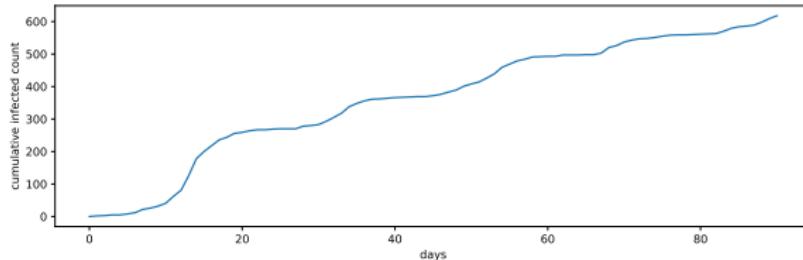
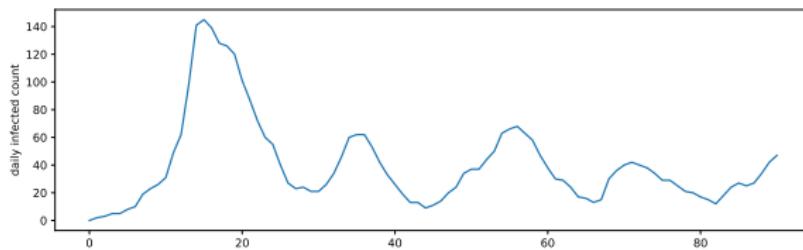
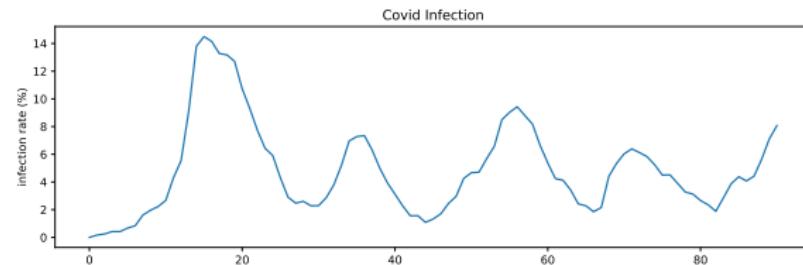
Table: Table used for the input to the SR-MILP

idstatefrom	idaction	idstateto	probability	reward	idoutcome
9	1	8	0.058824	-0.5	0
9	1	9	0.941176	-0.5	0
9	1	8	0	-0.5	1
9	1	9	1	-0.5	1
9	1	8	0	-0.5	2
9	1	9	0.962963	-0.5	2
9	1	8	0	-0.5	3
9	1	9	1	-0.5	3
9	1	8	0	-0.5	4
9	1	9	1	-0.5	4
9	1	8	0	-0.5	5
9	1	9	1	-0.5	5

The overall SR-MILP Formulation [LGP20]

$$\begin{aligned} & \underset{\substack{\pi \in \{0,1\}^{S \times A}, b \in \mathbb{R}, \\ u \in \mathbb{R}_+^{S \times A \times N}, y \in \mathbb{R}_+^N}}{\text{maximize}} && \lambda \cdot \left(b - \frac{1}{1-\alpha} \sum_{\omega \in \Omega} y(\omega) \right) + (1-\lambda) \cdot \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \sum_{\omega \in \Omega} u(s, a, \omega) \sum_{s' \in \mathcal{S}} r(s, a, s') \cdot P^\omega(s, a, s') \\ & \text{subject to} && y(\omega) - b \cdot f_\omega \geq - \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} u(s, a, \omega) \sum_{s' \in \mathcal{S}} P^\omega(s, a, s') \cdot r(s, a, s'), \quad \omega \in \Omega, \\ & && \sum_{a \in \mathcal{A}} u(s, a, \omega) = \sum_{s' \in \mathcal{S}} \sum_{a' \in \mathcal{A}} \gamma \cdot u(s', a', \omega) \cdot P^\omega(s', a', s) + f_\omega \cdot p_0(s), \quad s \in \mathcal{S}, \omega \in \Omega, \\ & && \sum_{a \in \mathcal{A}} \pi(s, a) = 1, \quad s \in \mathcal{S}, \\ & && u(s, a, \omega) \leq f_\omega \cdot \pi(s, a) / (1 - \gamma), \quad s \in \mathcal{S}, a \in \mathcal{A}, \omega \in \Omega. \end{aligned}$$

Figure: Overview of SR-MILP approach we applied on *COVID MDP*




Discovered policies using SR-MILP

State	Policy	State	Policy
0	OPEN	0	OPEN
1	OPEN	1	OPEN
2	OPEN	2	OPEN
3	CLOSE	3	OPEN
4	OPEN	4	OPEN
5	CLOSE	5	CLOSE
6	CLOSE	6	CLOSE
7	CLOSE	7	CLOSE
8	CLOSE	8	CLOSE
9	CLOSE	9	CLOSE

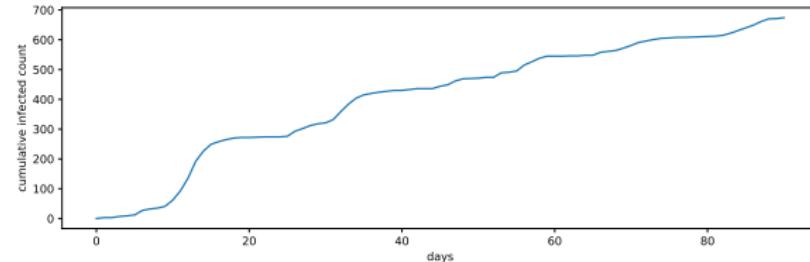
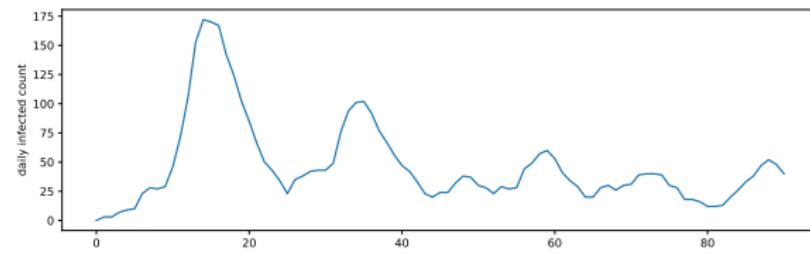
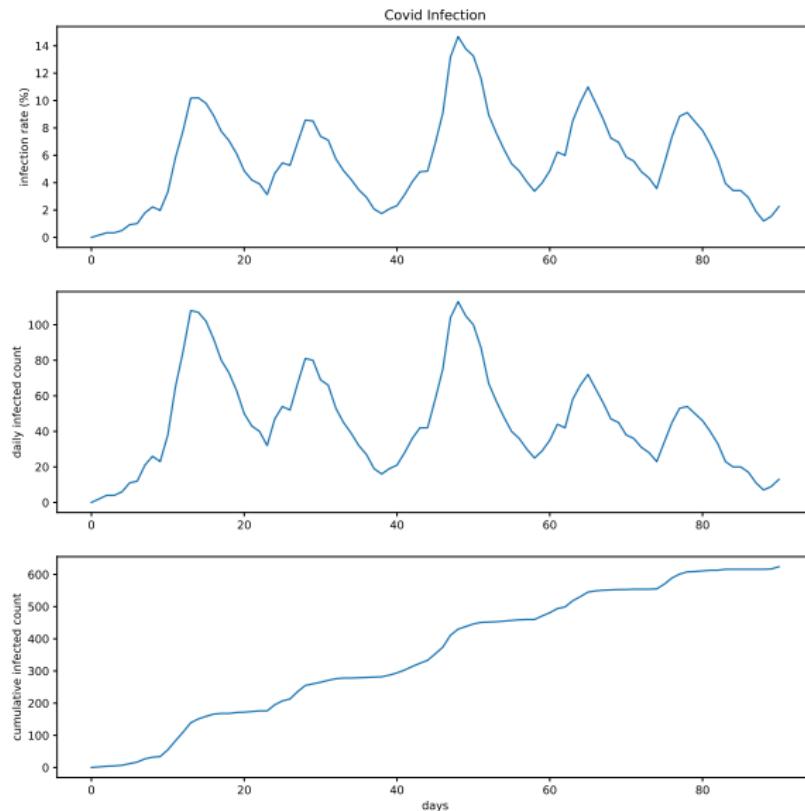
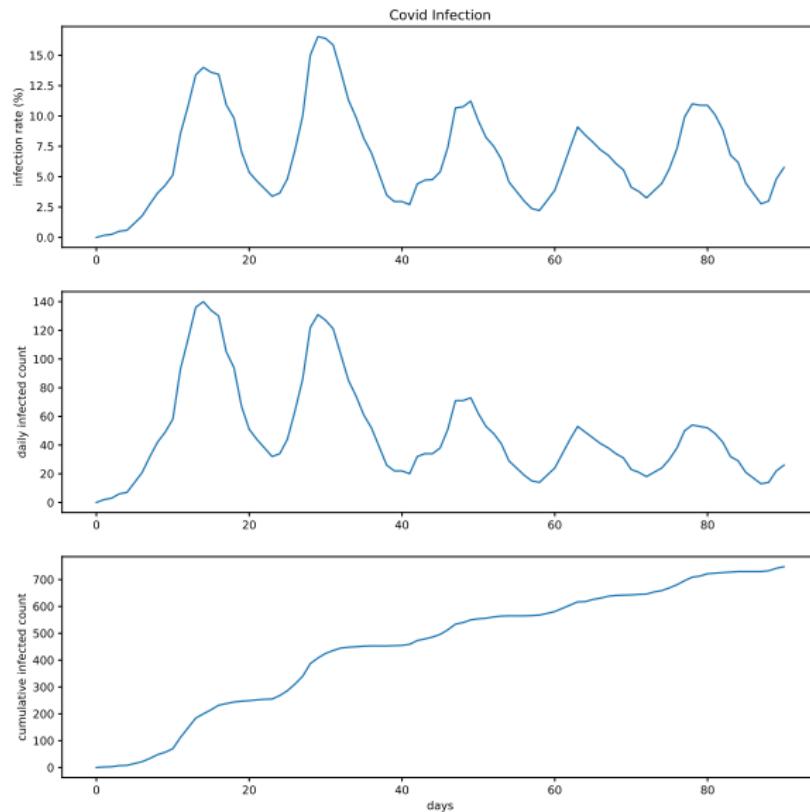
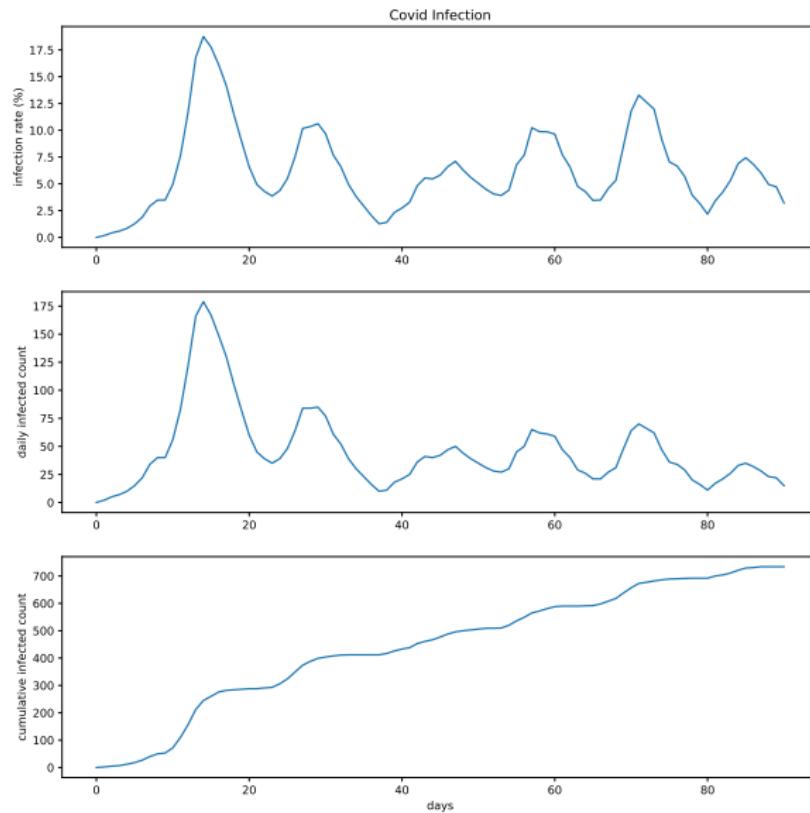



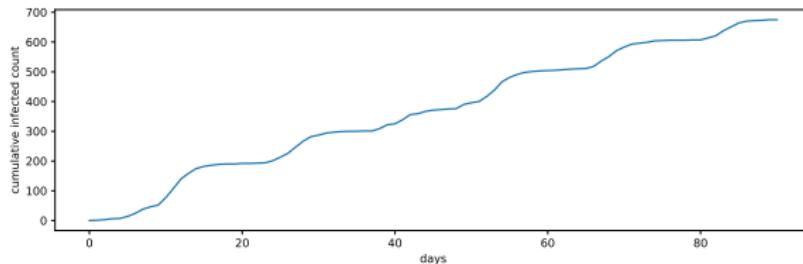
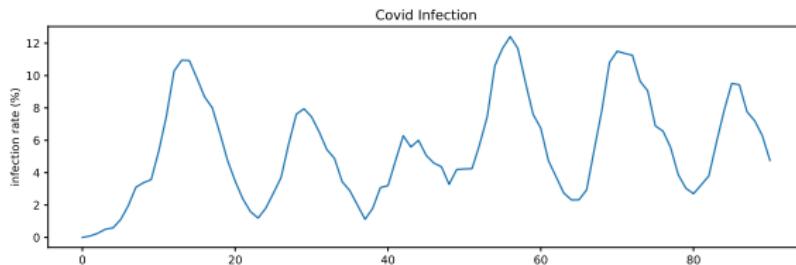
Table: SR-MILP robust policy

Table: SR-MILP CRAAM robust policy


Our SR-MILP implementation - 1


Our SR-MILP implementation - 3


Our SR-MILP implementation - 3



CRAAM SR-MILP implementation - 1

CRAAM SR-MILP implementation - 3

CRAAM SR-MILP implementation - 3

References

- *India's daily covid-19 death toll hits record high,*
<https://www.wsj.com/livecoverage/covid-2021-04-30>, Accessed: 2021-5-3.
- Elita A Lobo, Mohammad Ghavamzadeh, and Marek Petrik, *Soft-Robust algorithms for batch reinforcement learning.*
- Wikipedia contributors, *COVID-19*,
<https://en.wikipedia.org/w/index.php?title=COVID-19&oldid=1021198556>, May 2021, Accessed: 2021-5-3.