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Implementing SR-MILP in Python

I Team Goal: Generate Dataset and Implement the SR-MILP to
check if the output is consistent with the RCraam code.

I Number of states: 10, Number of action: 2, Number of
outcomes: 10

I State formulation:
% infected (of susceptible) State

[0, 1] 0
[1, 2] 1
[2, 3] 2
[3, 4] 3
[4, 5] 4
[5, 6] 5
[6, 7] 6
[7, 8] 7
[8, 9] 8
[9, 100] 9
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Implementing SR-MILP in Python

I Actions (policy): 0 → OPEN; 1 → CLOSE

I The reward formulation strategy:
I if closed and < 5% sick: −0.5 # don’t close pre-emptively

(economy?)

I if closed and ≥ 5% sick: 0.0 # close if many people are sick!
I if open and 5 ≥ % sick: −0.5 # don’t keep open if many

people are sick.
I if open and 5% sick: depending on how much the number of

cases increased, reward ∈ [0,−0.4]
I Outcome: It worked! It found the optimal policy as it did in

the Rcraam code. Also, it adaps to multiple outcomes now.
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DataSet Table

Table: Table used for the input to the SR-MILP

idstatefrom idaction idstateto probability reward idoutcome

0 0 0 0.5 -0.5 0

0 0 1 0.5 -0.5 0

0 0 0 0.1 -0.5 1

0 0 1 0.1 -0.5 1

0 0 0 1 -0.5 2

0 0 1 0 -0.5 2

0 0 0 1 -0.5 3

0 0 1 0 -0.5 3

0 0 0 0.1 -0.5 4

0 0 1 0.1 -0.5 4

0 0 0 1 -0.5 5

0 0 1 0 -0.5 5



Dataset Table (Continued)

Table: Table used for the input to the SR-MILP

idstatefrom idaction idstateto probability reward idoutcome

9 1 8 0.058824 -0.5 0

9 1 9 0.941176 -0.5 0

9 1 8 0 -0.5 1

9 1 9 1 -0.5 1

9 1 8 0 -0.5 2

9 1 9 0.962963 -0.5 2

9 1 8 0 -0.5 3

9 1 9 1 -0.5 3

9 1 8 0 -0.5 4

9 1 9 1 -0.5 4

9 1 8 0 -0.5 5

9 1 9 1 -0.5 5



The overall SR-MILP Formulation [LGP20]

Figure: Overview of SR-MILP approach we applied on COVID MDP

.



Discovered policies using SR-MILP

State Policy
0 OPEN
1 OPEN
2 OPEN
3 CLOSE
4 OPEN
5 CLOSE
6 CLOSE
7 CLOSE
8 CLOSE
9 CLOSE

Table: SR-MILP robust
policy

State Policy
0 OPEN
1 OPEN
2 OPEN
3 OPEN
4 OPEN
5 CLOSE
6 CLOSE
7 CLOSE
8 CLOSE
9 CLOSE

Table: SR-MILP CRAAM robust
policy



Our SR-MILP implementation - 1
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Our SR-MILP implementation - 3
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Our SR-MILP implementation - 3
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CRAAM SR-MILP implementation - 1
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CRAAM SR-MILP implementation - 3
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CRAAM SR-MILP implementation - 3
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