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Abstract. In this research, we study designing robot’s low-level con-
trollers directly from visual data and apply on certain complex manipu-
lation tasks. To understand the inherent goal from multiple objects, we
incorporate language commands to train the robot to learn inherent syn-
tactic properties inside the language, which can be utilized to accomplish
certain tasks. In summary, we approach designing a language-modulated
low-level controller for manipulation, where the robot does not have any
certain information about the environment. To focus on a specific goal,
we integrate a language-conditioned attention module, followed by a deep
neural network to focus on specific target objects. To compare the effi-
cacy of the attention mechanism, we evaluate our approach with another
baseline that directly predicts control commands from raw language em-
bedding. In addition, to demonstrate the limitations and emphasis fur-
ther improvement, we derive another baseline that integrates attention
with a dynamic system-based low-level control signal generator. We per-
formed a full-scale Human-Robot Interaction (HRI) study on 7 people
to evaluate the respective baseline and ours to illustrate the efficacy
from a real-world perspective. Overall, our initiative certainly indicates
the possibility of designing a vision-based low-level controller for dealing
with complex tasks in uncertain environments, e.g., where environment
dynamics change frequently, and the robot does not require explicitly
knowing that (if only visual information is required) for manipulation.

1 Introduction

There have already been certain advancements in Robotics with numerous appli-
cations in several domains, e.g., healthcare, therapy, navigation, etc. [33]. Most
of the problems in Robotics require the robot to learn certain skills to perform
specific tasks, e.g., manipulation. The commonly used paradigm to teach the
robot is imitation learning, where an expert teaches a robot to perform a cer-
tain task, and it is expected that the robot will perform that same task even
with some perturbations involved, i.e., environment and context changes [36, 5].
Teaching a robot hand technically means training it to predict joint angles to
perform a certain operation. For example, if a robot is about to pick an object
from a certain location, at first, an expert has to do this exact task, which is
called Kinesthetic Demonstration [1]. This approach is the fundamental way to
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direct a robot on calculating the probable joint angles. In Figure 1, we can see
two examples of kinesthetic demonstration. The left one is done for real-world
robots by expert humans, whereas the right one is done in the simulator. For
both cases, the robot hands try to manipulate the object, and the right one is
relatively complex as it tries to perform a certain task from a multiple set of
objects. For both cases, the main objective is to learn about generating control
signals to reach the target. The control signal generation is typically done by
a low-level controller. There have been several existing works done in designing
and improving the performance of low-level controllers [15, 22, 26]. One of the
widely accepted approaches in Dynamic Movement Primitives (DMP) [23, 10],
which works as a time-series predictor model to calculate the joint angles given
the current and goal position. However, DMP comes with a limitation of know-
ing the exact environment details prior to performing the tasks. To tackle this
problem, another line of research included purely visual features [29] to design
the control commands. However, for complex manipulation tasks like the right
portion of Figure 1, there has been limited work. More specifically, kinesthetic
demonstration with more abstract information, i.e., language, puts an extra hur-
dle to learn the specification accurately. In this work, we approach modulating
the high-level language information with purely visual data to generate a low-
level controller. One of the biggest advantages of our method is to let the robot
learn latent information from kinesthetic demonstration with language so that
it can understand how to predict joint angles in complex scenarios using visual
attention [30, 36]. For example, in the right figure of Figure 1, if the robot is
given an initial image with language grasp the grail, can the robot understand
what is grail and generate control signals (joint angles) from the consecutive
image features to reach that target? We further claim that the attention mecha-
nism is important rather than raw language features for low-level controllers by
a rigorous quantitative and Human-Computer Interaction (HRI) study done by
real humans.

2 Related Work

2.1 Progress on Attention Mechanism

Attention mechanism have recently become popular to extract semantic infor-
mation from high-dimensional data e.g., images [2, 32]. The attention mechanism
is mainly inspired from the biological vision, where humans usually put focus
on a specific region to use that sort of direction for doing further activities [17].
Attention has recently been popular for solving fine-grained classification activ-
ities, e.g., object, action recognition, etc [34, 20]. Because these literatures claim
that the biological neurons do not need to be active on all regions of the focal
point. The same applies to the context of deep learning models; focusing on
a specific region based on visual inputs helps better classification [13]. This is
also true for handling a large amount of data. We agree with the existing works
and emphasize integrating attention mechanisms to facilitate robots focusing on
specific objects or regions to perform certain tasks. Although there have been
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(a) Real Robot (b) Simulator Robot

Fig. 1: Performing Kinesthetic Demonstration on real and simulator robot.

some works on designing low-level controller by using attention modules [30],
no works integrated pure vision-based low-level controller that integrates visual
attention.

2.2 Bridging Between Language and Vision

A number of works have been recently focused on bridging multiple modalities,
e.g., text, vision, speech, etc. [36, 3] to perform certain tasks. One of them is Vi-
sual Question Answering (VQA) [3]. In VQA, the goal is to use natural language
to query an image and get answer from that. The main model mainly connects
two modalities, language, and vision, to create an inter-modal representation
for facilitating the query [6]. For the last few years, tremendous progress was
made by integrating attention (discussed in the earlier section) mechanism for
inter-modal feature representation. In our work, we take the concept from VQA,
where our goal is to predict joint angles other than answering natural language
questions. Our inherent attention module is a simplistic version of the recent
VQA approach [36], where we create another module dedicated to predicting
joint angles as discussed in the next section.

3 Problem Formulation: Network Architectures

This section will discuss the basic strategies to process two core components,
language and image data, toward generating the control signals.

3.1 Language-Conditioned Attention Network

Processing Language There have been several earlier literature [8, 24] who
discussed about efficient processing of language for Deep Learning. In our con-
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text, we will use language as a ‘key’ component, which is commonly seen in
Visual Question and Answering (VQA) domain [6]. For input sentence S, at
first, it is converted into lower-case, followed by removing punctuation. After
that, S is split into multiple words by space. We Say S = {s1, s2, ..., sn}, where
n is the maximum number of words in a sentence. For fitting the model, we pad
all sentences by maximum n n. For each si, we extract 300 dimensional GloVe
[25] word embedding, which is is trained on a large linguistic corpus and ex-
pected to generate an unique, representative vector for a word. We define Globe
Embedding as G(si), which predicts vi ∈ R300 for respective word si. The final
language embedding is a V = {v1, v2, ...., vi} ∈ Rn×300. We further utilize this
vector set either to integrate it directly (by averaging all sentence vectors) or
passing through a sequential network, e.g., GRU/RNN to predict the final vector
to taking certain decision, e.g., calculating attention based on these vector set.

Processing Image In our case, an image will work as a ‘query’ component,
where the language query will be used to find the appropriate key, i.e., target
object with the location. We used the existing state-of-the-art object detector
Faster R-CNN [27] to detect the objects from the robot’s environment image,
followed by processing respective objective features for generating a salient map.
More specifically, we initially pre-trained Faster R-CNN model and pass RGB
image I ∈ R568×330×3 taken from the robot’s viewpoint as the input. From
there, Faster R-CNN first of all predicts o objects X = {xo

1, x
o
2, ..., x

o
p} number of

objects above certain confidence threshold confidence(object) ∈ [0, 1]. For our
case, we have selected the minimum confidence threshold as 0.5. For each xo

i ,
the object detector model predicts respective feature vector (that it extracted

for object recognition) xf
i and bounding box xb

i ∈ R4. For this experiment, we
utilize the object feature and bounding box location to design the attention
network. We concatenate the object features with the language features in a
Convolutional Neural Network during the training stage, where the output is
usually the bounding box locations. The attention network learns to connect the
sentence with objects to properly predict the correct bounding box (where to
look for the target) region (essentially a ‘value’ component). During training,
the target box is used as the positive sample, whereas the other ones are used
as negative. The training component works as a triplet loss. We refer readers
to Section 3.1 for a details discussion on the attention network construction.
The initial Faster-RCNN model is trained on MSCOCO [18] dataset and uses
ResNet-101 [9]. However, considering our object context, we had to fine-tune (re-
train on our object information) and update the existing weights till convergence
according to our new dataset. This allows Faster R-CNN to adjust to the novel
environment.

Computing Attentive Feature Vector After the image and language fea-
tures are processed, computing attention feature vectors is relatively straight-
forward. At first, the language features are passed into a GRU layer, and the
output at final step 32 dimensional. Formally s = GRU(V ) ∈ R32. After that,
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(a) Basic low-level visual controller. (b) Overall pipeline of ‘Baseline 2’.

Fig. 2: A basic low-lever visual controller (left) and ‘Baseline 2’ pipeline (right).

the language feature s is concatenated with each candidate object xf
i to compute

the likelihood of each candidate as ai = wT
a fa([xf

i , s]). Here after concatenation
of sentence of each object feature, the attention fa : R32 → R64, which is further
converted into scalar by multiplying with wa ∈ R64. The fa is a nonlinear trans-
former to map all candidate objects to respective likelihoods. Finally, we have
a = softmax([a0, ..., ac]) for c candidate regions. The final weighted average for
each candidate image feature xi is calculated as e′ =

∑c
i=0 xiai where e′ ∈ R5

as we select top 5 object candidates. As per the recommendation from earlier
works in attention [30], we re-introduce the sentence embedding and calculate
the final feature e = ReLU(W [e′, s] + b), where W and b are weights that map
e ∈ R32. For directing the controller better, we concatenate e ∈ R32 with a ∈ R5

and initial joint angles j ∈ R7 to calculate the final feature set att ∈ R44, which
is further used in the proceeding networks (discussed in the next sections). In-
tuitively, the feature vector calculates sufficient information for robot to focus
on a single target from the language-conditioned command.

3.2 Frame-Difference Continuous Control Value Updater Network
(FCVN)

The fundamental goal of FCVN is to predict tentative joint angles for the reach-
ing next timestep t + 1 based on the current frame t and previous frame t − 1
features. The core network architecture is based on this image feature map-
ping to joint angles [29] as illustrated in Figure 2a. However, authors of [29]
only had one single goal, and the target position was always positioned in the
same location with no shape difference. However, in our case, the robot needs to
accomplish doing certain complex tasks based solely on natural language com-
mands. For that purpose, an additional language-focused feature is introduced
in FCVN. Figure 3 is a sample block diagram of FCVN. The initial t and t− 1
image features are concatenated and passed to several Multilayer Perceptron,
e.g., learnable dense layers. In addition, we include the language-based feature,
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Image
Feature 1

Image
Feature 2

Language Embedding or Attention Feature

Concatenate Concatenate Joint
Angles

Several Multilayer Perceptrons

Fig. 3: A simple outline of Frame-Difference Continuous Control Value Updater
Network, with basic functionalities. The ‘Multilayer Perceptons’ are the compo-
nents that are used in between the concatenations. There are several copies of
them, which learns weights. Parameters are more discussed in Section 4.4.

e.g., sole language feature or language-modulated attention feature, to concate-
nate with the immediate dense layer and pass through additional dense layers
to predict the joint angles. The reason for using multiple dense layers is to let
the controller module enough parameters to learn to map the feature vectors.
A detailed description of how they have been used is discussed in the following
sections.

3.3 Baseline 1: Visual Controller with only Language Information
(without Attention)

As discussed in the earlier section, we have processed the language data as ‘key’
for ‘querying’ image to predict ‘value’, which is the bounding box region to put
attention. Technically, by ‘image’ we meant the first static image of the robot
scene. To reach a specific goal or perform a specific task, processing continuous
frames is an important goal. Also, our main objective was to claim that the
attention mechanism improves low-level visual controllers. For claiming this, we
are designing ‘Baseline 1’ Network, which does not include attention, rather
uses only raw language features and continuous frame features to predict the
trajectory. The implication here is that we are not explicitly using the image as
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Fig. 4: Network architecture of ‘Baseline 1’. It directly uses language information
without attention for joint angle prediction.

a query or language sentence as a key. Also, we never provide the ground truth
object bounding box. We expect that the robot will learn how to reach certain
objects without a primary target, i.e., by analyzing the target location from
the continuous joint angle values. In this line of assumption, we integrate the
FCVN network that takes language features once per demonstration and frames
over time steps to map the image difference toward predicting the robot joint
angles. Figure 4 illustrates the overall pipeline. In the top left row, we can see
the sentence, which is further embedded and averaged as discussed in Section
3.1. After that, we take the robot’s two initial frames by using the ground truth
trajectories. We can say that the bottom left image is t and the upper one is
t−1. Further, for each of these images, we predict the global image feature using
the pre-trained ResNet-18 [9] model. All three features are passed as input to
the FCVN as discussed in Section 3.2. The network predicts the joint angles for
the further timestep t + 1. After this step, the frame at t + 1 and t timestep
is passed to the network for predicting joint angles at t + 2 timestep, which
keeps continuing until the number of max steps mentioned in the ground truth.
We note that we use the language feature once for one demonstration, which
relatively works as a static feature set during the timesteps.

3.4 Ours: Visual Controller with Language-Modulated Attention

We argue that the sole language feature and the global image feature descriptor
can not properly identify the low-level controller network (FCVN) in the proper
direction. Because only language information, when passed as a compressed vec-
tor (by averaging), may lose important syntactic components, e.g., shape and
color information. Moreover, when FCVN tries to connect the language features
with visual ones, they may not properly converge due to the large modality
gap. The issue regarding the modality gap has been widely studied in the VQA
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Fig. 5: Our proposed pipeline, which uses attention network to modulate the
language for fixing the target and better directing FCVN model.

domain [6]. We also argue at the same point and utilize the attention mecha-
nism as discussed in Section 3.1 to process the language modulation with the
initial frame first, mainly to fix the probable target bounding box derived from
the network. The next consecutive frames will only use the feature information
of the target, which will lead the FCVN to generalize better prediction over
time. Figure 5 illustrated our overall pipeline. We can see that the initial lan-
guage embedding and the image (without feature extraction) are passed to the
Language-Conditioned Attention Network. The network processes the language
vectors using the GRU unit and connects the features with Faster R-CNN object
information as discussed in Section 3.1 to produce the feature of the target box
(shown in the red circle of the figure). Later, this attention feature is used as
static information and passed to the FCVN model with the consecutive frames
with regular ResNet-18 features, as we discussed in the earlier section. Here we
note that the FCVN now focuses only on the image features, one is coming from
the attention module, and the others are the timestep image features. So, tech-
nically, there is no modality gap that was present in ‘Baseline 1’. We expect that
this approach should work better compared to ‘Baseline 1’ for this particular
reason.

3.5 Baseline 2: Non-Visual Controller with Language-Modulated
Attention

We have discussed generating low-level control signals (joint angles) solely from
the visual data in the last two sections. More specifically, the FCVN is dominated
by image features, and no specific locations are fixed. So, based on only pixel-
level information, the joint angles are being predicted. However, is another line of
research, which takes the trajectory generation problem as time-series prediction
[35] and continues predicting by not requiring consecutive image data, rather
from the target location and current location and distance between them. To
accomplish, it uses Dynamic Movement Primitives (DMP) [23, 10] to predict
the angles as the abstract process illustrated in Figure 2b. DMP is a widely
studied field for generating smoother trajectories in mostly ideal environments,
e.g., a simulator. In this case, the target location is set by the attention network,
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Fig. 6: Pipeline of ‘Baseline 2’. It uses simple DMP to predict the trajectories
from the goal set by the attention module.

and the DMP module predicts continuous joint angles based on that. Figure
6 illustrates the overall pipeline of ‘Baseline 2.’ We can note the similarity of
this pipeline with ours till the attention network. After the target box xb

i ∈ R4

is predicted from the module as discussed in Section 3.1, it is passed to the
DMP module. Here we note that the DMP does not get the pixel-level target
information as ours and ‘Baseline 1’ had. Rather it gets the relative information
of that object with respect to the environment of the robot simulator. During
the continuous steps, it tries to reach that exact simulator location. We can note
that, although simpler, DMP requires the environment information beforehand.
Based on several studies [7, 21, 19], it fails when it comes to a real-world context,
i.e., coping up with environment changes, noisy information. On the other hand,
our approach can adapt to any context as it does not need any environment
information and works on pixel-level data from the images. However, we expect
that our approach will perform closer to ‘Baseline 2’ even it does not have access
to the environment properties.

4 Experimental Analysis

4.1 Simulator Details

We have conducted all experiments in simulation concerning the COVID-19
pandemic1. For that, we used CoppeliaSim [11], i.e., V-REP simulator, which
provides dynamics simulation at a 20Hz update rate. For our experiment, similar
to the setup from [30], we used cups and bowls with 20 total variations (two
sizes, two shapes, and five colors). We used UR5 Manipulator Robot [14] for the
experiments. The object setup was random and the simulator itself generated
the ground truth trajectories. Both object setup and trajectories were recorded
for the dataset creation.

4.2 Dataset and Subsampling

For our experiment, we have incorporated the dataset of [30] for a fair compari-
son with respect to the simulation context. The authors of [30] generated random
movements with objects done by the UR5 robot in simulation and asked several

1 https://www.cdc.gov/coronavirus/2019-ncov/index.html
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Fig. 7: FCVN with attention features included.

human evaluators to provide language commands for that task. The core anno-
tation was done on 200 tasks ranged over 20 total categories. Based on that, they
extracted multiple demonstrations and augmented sentences (by using synonyms
and switching syntactic structure) to generate in total 45000 demonstrations and
natural language commands. There, 22500 consisted ‘picking’, and the rest 22500
was pouring tasks. In total, they trained ‘Baseline 2’ 3.5 on 40000 demonstra-
tions, evaluated on 4000 and tested on 1000. For our experiment, we narrowed
down the problem by selecting only the ‘picking’ task. Out of that 22500 tasks, we
randomly sub-sampled 500 demonstrations and maintained standard 70% train,
10% validation, and 20% test. It resulted in 350 for training, 50 for validation,
and the rest 100 for testing.

4.3 Preprocessing

The preprocessing was performed in two levels. The first objective was to find
out the objects correctly from the simulation images. To accomplish that, we
have used Faster R-CNN [27] object detector model. However, as the Faster-
RCNN model was trained on real-world data and ours are from simulation,
we further fine-tuned the model with all possible ground truth object data to
perform up to adapt with the environment. For processing the language, we have



Fig. 8: FCVN with language embedding, for ‘Baseline 1’.

used a popular Word Embedding Model (GloVe) [25], which maps each word
into 300 dimensional vector space. For processing the attention from image and
language data, we have adopted the ‘Semantic Model’ from [30], which trained
an attention network with language embedding to influence the CNN feature
maps. This process was done to find out the candidate region by weighting using
probability distribution on all objects (found by Faster R-CNN) and re-weighting
the winning candidate object with language embedding to train. We have utilized
the final feature vector for our attention-based controller network as discussed
in Section 3.4.

4.4 Model Parameters

We will discuss about the dimensions of each of the terminal input and outputs
in detail. We have disussed the structure of attention model in Section 3.1. For
FCVN, we pass the timestep image features using ResNet-18. To fit the image
into the input of ResNet-18, we reshape the image into 224× 224× 3 dimension.
The model predicts output of 512 dimensions. Features from two consecutive
frames add up a 1024 dimensional vector, which is further passed with fully con-
nected layers toward predicting 7 dimensional. This is the mainstream network.



However, we have language feature vector as input for ‘Baseline 1’ and attention
information for Our model. For that, we additionally, pass the 300 dimensional
sentence embedding to a dense layer for making it till 64 dimension. later, we
concatenate this vector with the mainstream FCVN’s 64 dimensional output and
pass to the further layers to generate the final 7 dimensional joint angles. How-
ever, for the case of attention, the number of features are 44. So the mainstream
FCVN’s 64 dimensional output is compressed to 44 and concatenated with the
attention vector for passing to the next layers. Figure 8 and Figure 7 illustrates
the discussed FCVN model configuration and parameters of ‘Baseline 1’ and Our
approach, respectively.

4.5 Training and Evaluation Criteria

For training the ‘Baseline 1’ in Section 3.3 and Our model in Section 3.5, we
used the 350 sub-sampled videos along with trajectory and language informa-
tion. We pre-computed the sentence embeddings for training ‘Baseline 1’ and
utilized the averaged (over all words) vector only once per video demonstration.
We pre-computed the attention vector for training our model based on the model
discussed in the earlier section and used the same vector multiple times per video
demonstration. For both cases, the ‘Control Value Updater Network’ was trained
based on the Mean-Squared Error Loss between the model prediction and actual
(ground-truth) joint angles. However, for ‘Baseline 2’ in Section 3.5, we used the
pre-trained model from [30] as it was trained on identical simulation and dataset
we are using. On each model epoch, we evaluate the model capabilities via vali-
dating the performance on the validation split. The neural network models were
designed using Python-based deep learning libraries: PyTorch2 and Tensorflow3.
We rely on the HRI Experiment to test the outcome, where we evaluate the
outputs by real humans, as discussed in Section 6. The qualitative analysis for
model training is demonstrated in the next section.

5 Quantitative Analysis

In this section, we interpret and compare the training loss of ‘Baseline 1’ and
Ours. Ass mentioned in the earlier section, for each demonstration, the loss is
computed for each time step t based on the joint angles predicted by the ‘Control
Value Updater Network’ and ground truth angles (by simulator). As both values
are normalized to be in between 0 to 1, for visualization, we amplify the average
loss by multiplying with 602. The overall loss per epoch (single iteration over all
videos) is reported accordingly. In Figure 9, we can notice that the training loss of
‘Baseline 1’ is unstable with respect to the epochs, which indicates that the model
can not generalize or converge with the given visual and language information.
Compared to this, our training approach, as mentioned in Figure 10 relatively

2 https://pytorch.org
3 https://www.tensorflow.org



achieves better performance with lower training loss than the ‘Baseline 1’. Also,
the convergence is satisfactory and relatively less unstable. During the validation
stages (testing error on unseen data), we can notice that our approach in Figure
12 gains a loss which is less than 500 in one stage, whereas, the ‘Baseline 1’
validation loss in Figure 11 can hardly achieve less than 600. From this analysis,
we can claim that solely language embedding can not indicate a robot controller
to set its goal; rather, assistance from the attention mechanism (as we did)
can direct the robot more explicitly to focus on a specific object/region for
manipulation. Hereby, attention is important in the process of designing a low-
level controller. As we have only used the pre-trained model of ‘Baseline 2’, we
have omitted the quantitative comparison. However, we have compared all three
approaches on the test set as an HRI study (discussed in the next section).

Fig. 9: Training Loss of ‘Baseline 1’ (no attention, only language features)

Fig. 10: Training Loss of Our Network (language-modulated attention)
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Fig. 11: Validation Loss of ‘Baseline 1’ (no attention, only language features)

Fig. 12: Validation Loss of Our Network (language-modulated attention)

6 Qualitative Analysis: An HRI Study

To demonstrate the effectiveness of a low-level controller, a real-life evaluation is
necessary, as discussed in the earlier works [4, 31]. This is due to the concern that
the loss function we are evaluating might be convincing from the perspective
of our trained model; however, in reality, the training might not be fruitful.
For example, the controller might not generate sufficient angles to direct the
robot to reach that specific location over time. To overcome this uncertainty,
we have performed an HRI study to evaluate 4 contexts, i.e., ‘Baseline 1’, Our
Approach, ‘Baseline 2’, and Ground Truth. The experiment design is discussed
in the following subsection.

6.1 Experimental Design

In this section, we will explain the standard procedure/protocol we followed for
conducting the experiment.

Hypothesis: Attention mechanism can train low-level controllers to accom-
plish relatively complex tasks than training directly with language embedding.

Subjects: 7 Male (age: 23-33), Engineering Graduate students with no prior
expertise in Robotics.



Measurement Process: Each of the persons had to evaluate 10 demon-
strations based on 4 following criteria based on the likert scale (0-5):

– Accuracy: Could the robot understand language content properly and
reach the target object?

– Closeness: How close the robot could reach to the target?
– Smoothness: How smooth the trajectory was during the reach?
– Overall Pick Approach: Could the robot made satisfactory progress in

picking the object?

We can consider the above criterions as independent variables, from which
we analyze the dependent variable, i.e., Hypothesis’s feasibility.

Prior to the survey, every candidate was given a 30 minute demonstration
of the objective of their work. They were also trained how to accurately select
the dependent variable measurements, followed by a brief introduction with the
objects shapes and names. We have randomly selected 10 demonstrations out
of 100 from the test set and used these to generate the robot manipulation for
Baseline 1, ‘Baseline 2’, Ours, and Ground Truth. We kept Ground Truth as a
evaluation approach to depict the human perspective and validating their mea-
surements. The respective language text were embed with the video for better
user experience. The videos of resulting demonstrations were randomized and
each user did not know the category over 40 demonstrations. Figure 13 illus-
trates the survey process built with Python backend. After each video played,
the user have to input their score for the four independent variable question we
set. After each submission, the user information was saved into a file with their
name as prefix as shown in Figure 15. We can see a person performing annota-
tion in Figure 14. Here we note that, ‘ noatt’ suffix means ‘Baseline 1’, ‘ att’ is
Our method, ‘ sim’ is ‘Baseline 2’, and ’ gt new’ is the Ground Truth.

6.2 Results and Discussion

After collecting survey result from 7 persons, we grouped and averaged the score
for each approach (4 in total) on 4 independent variables. To measure the fluc-
tuation among the evaluators’ perception, we recorded standard deviation as
well. Table 1 depicts the overall performance measurement based on likert scale
for each approaches. From the result, we can notice an interesting phenomenon
regarding Ground Truth, which is, not a perfect 5 for any independent variables
as we initially expected. There can be one possible explanation regarding this
case: the evaluators could not interpret the language clearly, which led them to
score lower even if the correct object was picked. It can be clearly seen that the
improvement of the visual controller after replacing language embedding with
language-modulated attention mechanism. For all cases, our proposed controller
outperforms ‘Baseline 1’. The highest score of our approach was achieved in
‘Closeness’ variable, which implies that our approach was fairly close enough to
reach the target. However, the performance of ‘Baseline 2’ exceeded ours in all
aspects, also it was closer to the performance of ground truth. There can be two



Fig. 13: The Terminal User Interface (UI) for recording the evaluations.

explanations regarding this. First of all, we used the pre-trained model of ‘Base-
line 2’. It can be possible that the 10 demonstrations we have used for evaluation
could have been in the training set of ‘Baseline 2’. Also, they utilized Dynamic
Motion Primitive (DMP) [10], which is an established method for trajectory
generation and robustly performs in given sequential environment information
and target location over time. However according to several researches [7, 21,
19], DMP controller could fail if it was about to perform in uncontrolled en-
vironment, whereas our proposed low-level controller only relies on visual data,
which might perform better for the real-world environments where the dynamics
change frequently and having a complete information of the environment is fairly
impossible as opposed to the simulator. Similarly, we notice that the ‘Baseline 1’
drastically fails in human evaluation. From Figure 16, we can also analyze that
the robot is not producing any plausible motion that could reach the target. This
issue can be connected with our low training examples, which clearly fails the
joint angle prediction network to converge. However, we can conclude that if we
train from scratch, even with low data, our language-modulated controller can
generalize objects and produce relatively fair joint angles whereas only language
embedding can not, perhaps need more data to learn how to predict the angles.

If we take a look at the Standard Deviation of the results, it can be noticed
that, the scoring fluctuation was highest in Our method. The ground truth also
showed this phenomenon close to us. This issue could be because of some con-
founding variables regarding human perception and judgment, which we leave
for further research.

Although we have trained the visual controller solely from video data, we
have noticed another phenomenon while executing the model prediction in sim-
ulator. When we analyze the result videos produced by our models and captured
by the simulator camera that we used during training, we can see that the hand



Fig. 14: An HRI experiment participant is working on evaluating the videos.

reaches very close to the object. However, in real simulator environment, we can
notice that it does not go down to reach that object. Figure 17 illustrated a
clearer example of this phenomenon. In the left side, we can see that the overall
performance looks reasonable from the top-view, however, from another view-
point, there is a large gap (right figure). We argue that, this is not the entire
fault by the model, but the training data. If we analyze the ground truth of the
same video in Figure 18, it can be noticed that when the hand reaches the object,
there is no visual difference, which resulted our model to ignore this constraint.
Because, our model takes two consecutive frame and calculates feature different,
which was near to 0 in this specific case. The issue can be solved to incorporate
similar concept like TCN [28], where can feed the model from multiple visual
data and it can learn more latent constraints. Moreover, we can introduce depth
information as another input feature to train our morel. Nevertheless, depen-
dence on depth cameras in real-world scenarios might plummet the performance
as studied in [12]. Hereby, we prefer multi-view input to extend our controller
model. Here is the YouTube Playlist4 of the 10 HRI experiment videos for each
approach we discussed. We are planning to extend it with a large scale training.

4 https://youtube.com/playlist?list=PL0BfYeyasxHMrNloFM9 LwoH7mCBirDdf



Fig. 15: A sample evaluation output done by evaluator named ‘Salman’.

7 Conclusion and Future Possible Extensions

In this research, we explored designing a low-level controller to perform ma-
nipulation tasks that only depend on visual data. We explicitly used language
information to specify the object properties, e.g., color, shape, to direct the con-
troller. To accomplish a smoother training process, we used language-modulated
attention to generate unique feature sets for the controller model convergence.
To validate our experiment, we have compared our method with ‘Baseline 1’,
which uses language embedding features directly to predict the joint angles and
fails due to having noisy information. In that perspective, our proposed pipeline
outperforms ‘Baseline 1’ in terms of quantitative (model training and valida-
tion loss) and qualitative analysis performed by real humans. Concerning our
model’s relatively lower performance compared to ‘Baseline 2’, which uses DMP
to generate angles, we have several rooms for further extensions of this work.
First of all, the model only performs for simulation data. However, a similar-
scale experiment can be integrated for real-world data. As the deep learning

Table 1: Averaged outcome of each approach based on the likert scale.

Accuracy Closeness Consistency Overall

Baseline 1 0.55 ± 0.85 0.58 ± 0.85 0.53 ± 0.79 0.56 ± 0.86

Ours (attention) 2.19 ± 1.28 2.26 ± 1.38 2.21 ± 1.32 1.63 ± 1.65

Baseline 2 4.33 ± 1.10 4.51 ± 0.67 4.35 ± 0.79 4.45 ± 0.89

Ground Truth 4.40 ± 1.04 4.40 ± 0.98 4.45 ± 1.32 4.65 ± 1.64



Fig. 16: An example of ‘Baseline 1’ outcome that never makes a valid trajectory.

models can be easily adaptable to new scenarios by transfer learning [37], we
can extend existing work with this line of adaptation. The current network only
relies on two consecutive image differences to predict trajectories. We argue that
this can fail with several similar examples and may bias the network. Hereby, a
memory-based module, e.g., Long Short-Term memory [16] can be integrated to
keep track of the earlier joint angles prediction robustness to bias. Finally, we
expect the low-level controller to be perturbations-proof for having a robust per-
formance in uncertain environments. So, we can introduce adversaries (random
or human-made) to train the model to avoid them while reaching the target.

Fig. 17: An example of the outcome our method that reaches closer from top
view, but does not get below due to the lack of training examples.



Fig. 18: The ground truth of the example which shows the ideal case.
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