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1 Introduction and Background

Federated Learning (FL), proposed by [6] is a new paradigm in decentralized
machine learning, where a group of participants who each possess local data
jointly train a model. In this process, each participant uses their local data to
compute a gradient given the model parameters. Then, it shares the gradient
to a central server, keeping the local data private. The server takes gradients
from each of the participants and aggregates them into a global gradient up-
date. The globally updated model parameters are then shared to each of the
participants for use in the next iteration. In this process, the data owners, i.e.,
local machines, never share sensitive information, yet all devices can train a
sophisticated model collaboratively. This “privacy-preserving” technique has a
number of practical impacts, from personal privacy to institutional. For exam-
ple, scanner machines, e.g., X-ray, have sensitive hospital patient information,
and thus there are often legal barriers preventing the open sharing of such data.
However, if hospitals want to train a model that predicts lung damage, it may
require a significant amount of training samples. Here, the federated learning
approach can be helpful because multiple hospitals will share a gradient of X-
ray images locally and update their models from the global updates without
releasing any confidential information. Figure 1a illustrates the scenario of fed-
erated learning in the medical domain. In mobile devices, e.g., mobile phones,
federated learning might come in handy to train language models without ex-
posing any keystroke information to anyone. However, as there is no central
verification of the data and edge devices’ gradient, federated learning can be
easily exposed to adversarial attacks. The attacks can appear in several forms,
sometimes unintentionally.

Several works of follow-up research focused on making federated learning
robust against adversarial attacks. The initial line of research in federated
learning robustness assumed some hypothetical attack models. This report will
assume that our training objective is to train a homogeneous model, where the
local machines share weights for a global update. In this setting, the weight
update is done by FedAVG or FedSGD [6]. These two approaches mainly focus
on averaging the weights, which may affect the overall training weights even if a
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(a) Federated Learning in Hospital Data (b) Malicious Gradient

Figure 1: An example of federated learning (left) setup with confidential data
(image taken from [9]). However, any of the local devices may have a malicious
gradient value (right image, marked as red) to manipulate the global update
(image taken from [2]).

device sends anomaly weight to the global server. In Figure 1b, we can see that
the red gradient is malicious compared to other gradients, and this will affect
the whole training procedure if the anomaly can not be detected. [2] formulated
the problem as “Byzantine Attack” to tackle this problem, where a fraction of
the local devices can act maliciously. In this scenario, the malicious gradient
push may be intentional as the infected device(s) know the internal update
mechanism. They proposed Byzantine-resilient aggregation that can perform
robustly as long as a majority of the participants are honest. This is just one
canonical example of adversarial robustness in FL – many different adversarial
models have been characterized [5], including e.g. Sybil-based poisoning [1, 3]
attacks, wherein the adversary is capable of creating additional FL participants
to skew the honest-malicious ratio. In this work, we propose a setting with
a weaker adversarial model than we have observed in our literature search.
Though the model supposes weaker adversaries, we believe that this model will
fulfill a natural and useful niche in FL.

Our main focus is to address the scenario of FL participants who have diverse
local distributions. We assume that a certain portion of devices generates data
from a shifted distribution, and the gradient averaging contributes to misclassi-
fication. Some existing FL frameworks may be applicable to this problem such
as domain adaptation [7], transfer learning [4], and representation learning [10].
To address robustness in distribution shift for federated learning, [8] proposed
AUROR, a framework to find anomaly distribution of features in participating
devices. Here, the global model has access to certain masked features of the local
devices, which are used to cluster and find the anomaly distributions. However,
we restrict privacy by setting the local devices to share only gradient to the
global model in our problem (as we assume our structure is fully decentralized).
Below we discuss more on our problem setup.
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Figure 2: A cartoon of aggregated data among parties with distinct distributions
participating in FL. A. The data of three parties sampling from roughly the
same distribution. B. The data of a fourth party whose distribution is shifted
to the right in comparison to the initial three. C. The data of all four parties
superimposed. Note that the region between the two dotted lines contains
a mixture of positive and negative labeled examples, potentially resulting in
degraded model accuracy.

1.1 Motivation

As FL is particularly vulnerable to data poisoning attacks, the problem of miti-
gating threats from malicious adversarial FL participants has received substan-
tial attention in previous work. Significantly less attention has been devoted to
addressing a setting wherein honest participants are sampling data from related
but distinct distributions. As mentioned, there exist tools such as federated
transfer learning, or federated representation learning, that could potentially be
employed to address this problem. However, to our knowledge these solutions
are thus far totally informal – no explicit formulation of this setting, nor algo-
rithms with formal guarantees of robustness against its specific challenges, are
known to us.

To think through this setting, we provide a sketch of an example data set
distributed among FL participants (Figure 2). Consider four hospitals that want
to jointly train a model without sharing user data. Since they are hospitals, we
can reasonably expect them to follow a semi-honest adversarial model (that is,
they will execute the FL protocol faithfully, but we still need a protocol that
prevents sharing of patient data). However, suppose that due to differences in
machine calibration, differing opinions of experts working at the hospitals, dif-
ferent patient demographics etc., one of the hospitals has data that comes from
a noticeably shifted distribution compared to the others (see the Red party in
Figure 2). This diversity among data distributions could result in degraded per-
formance from the trained model, even though all parties are behaving honestly.
Further, the consequences of these differing local distributions of training data
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will be particularly severe for the Red party. This is because in the most basic
forms of FL (e.g. averaging gradient updates), the jointly trained model con-
verges to a solution that compromises between performance on all of its training
data points. Thus the resulting model will likely be particularly unsuitable for
a party whose data is sampled from a divergent distribution. In the present
work, our main contribution is that we provide a model that captures this and
related scenarios.

2 Model

We model the scenario of distribution diversity among participants in FL as
follows. Suppose S is a set of n parties, and A ⊂ S is a set of corrupted par-
ties with size k. Suppose each party i ∈ [n] has mi ∈ N which represents the
number of data points they will contribute to the FL protocol. Suppose D is
some uncorrupted distribution, and {D′

1, ..., D
′
k} is a set of corrupted distribu-

tions that can optionally be defined to be within a certain distance of the true
distribution D. Then the sampling process for our model is defined as follows.

• For Pi ∈ A :

– For j ∈ [1,mi] :

∗ Sample (xi,j , yi,j) ∼ D′
i, assign it to Pi

• For Pi ∈ S \ A :

– For j ∈ [1,mi] :

∗ Sample (xi,j , yi,j) ∼ D, assign it to Pi

We note that this model can be seen as a relaxation of existing models of data
corruption in centralized machine learning (e.g. simply sampling an ϵ-fraction
of the data from a corrupted distribution). Thus some theoretical guarantees
could likely be obtained from these simpler models. Further, the effects of the
data corruption from our model could ostensibly be offset by algorithms de-
signed for stronger forms of robustness (e.g. fully byzantine fault-tolerant FL).
However, we argue that our model is important even still. Indeed, our setting
provides unique advantages that could likely be leveraged to achieve more desir-
able results. The main advantages of our setting are (a): parties with data from
divergent distributions are otherwise not malicious, and thus can be counted on
to honestly execute local protocols which investigate and mitigate data corrup-
tion, and (b): each contributor of data has a local distribution, the structure of
which can be leveraged by learning algorithms. We additionally note that while
most corruption models are predicated on the goal of improving performance
relative to the uncorrupted distribution, in our setting the performance of par-
ties sampling from corrupted distributions is also important. For example, we
would like to be able to leverage the results of the jointly trained model even
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for a hospital whose MRI machine has some technical malfunctions. By mak-
ing assumptions about the distributions of corrupted parties’ data, our setting
makes it possible to design algorithms with this goal in mind.

2.1 A Byzantine Tolerant FL Algorithm for SGD

Many modern machine learning algorithms rely on Stochastic Gradient Descent
(SGD), including neural networks, regression, matrix factorization, and sup-
port vector machines[2]. Therefore, it is useful to consider how we can make
Federated Learning more resilient to different types of corruption and possibly
malicious adversaries. Such a robust algorithm could produce more accurate
classifiers in a Federated Learning situation where the participants would want
to share their data indirectly with one another thereby leveraging all data with-
out compromising privacy. It is particularly useful in a situation where the
number of participants is relatively small and the demand for greater accuracy
outweighs concerns for computational costs. In contrast, such an algorithm may
be prohibitively expensive for use cases involving millions of participants, such
as algorithms that make use of the data on edge devices in personal computing.
We note that this type of algorithm is particularly suitable for application in the
medical context that we are concerned with in this report, where the number
of participants is limited, but a high premium is placed on the reliability of the
final classifier and robustness of the learning algorithm. We also note that a
fault-tolerant SGD algorithm is more suitable in Federated Learning because of
its natural ability to leverage data from multiple participants indirectly during
mini-batch updates without revealing each participant’s data to the others.

The proposed algorithm, Krum[2], is designed to make the FL protocol tol-
erant against multiple Byzantine workers. Existing algorithms that ultimately
rely on linear combinations of the gradient vector updates from the workers
are shown to be unable to tolerate more than one Byzantine worker - a worker
that arbitrarily corrupts his data, either maliciously or non-maliciously. For
example, a least-square-distance based aggregation rule will be unable to select
the vectors closest to the true distribution if a second Byzantine worker skew
the distribution of the vectors so much that the other Byzantine worker has a
smaller square-distance to other workers than the uncorrupted workers. Krum
is tolerant against f faulty workers/participants among n total participants in
the worst case, as long as 2f + 2 < n, namely the corrupted workers constitute
a minority of total workers. Another strong advantage of Krum is its time com-
plexity (O(n2 ·d)), where d is the dimension of the gradient which can be a very
large number in neural network training.

3 Research Questions and Future Work

We sketched a simple framework that one might follow to achieve algorithms
robust to the corruption in our setting. An outline proceeds as follows.

1. Perform a standard FL algorithm to train a model M
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2. Using held out test data, parties evaluate the performance ofM on their lo-
cal distributions, and/or compute aggregate statistics of their data. They
communicate these evaluations with the other parties. Using this informa-
tion, the parties determine whether their distributions are divergent from
the other participants.

3. Parties with divergent distributions perform a ‘batch correction’ protocol
to align their data with the consensus distribution.

4. Parties perform a second pass of FL using the aligned data to train a
model M ′

• Parties with divergent distributions can use the transformation from
the previous step to feed data from their local distribution to M ′

A potential area for future work would be to realize this sketch into a con-
crete algorithm. We suspect that federated transfer learning and/or federated
representation learning are likely candidates for effectively realizing step 3. In
particular, if the parties were able to learn a shared representation of their lo-
cal data sources that better aligned all of the distributions, that would likely
mitigate the source of corruption in our model.
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