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Abstract—OQver the last few years, there has been increasing use

of drones by terror groups and in armed conflict. Several technologies have been
developed to detect drone flights. However, much less work has been done on the
Drone Threat Prediction Problem (DTPP): predicting which drone trajectories are
threatening and which ones are not. We propose DEWS (Drone Early Warning
System), a framework to solve this problem. Solving DTPP early is key. Once a
drone starts on its trajectory, we show that DEWS can make accurate predictions
within 20-30 seconds of the flight with an F1-score of over 80% on data about

a major European city. We study the tradeoff between earliness of predictions
and accuracy. We identify the key features that ensure good predictions.

error groups such as ISIS [1], the PKK [2],

Lashkar-e-Taiba', and others are increasingly

using drones in various operations. Drones are
also becoming a preferred instrument of nation state
warfare as evidenced by the war in Ukraine. There is
now deep concern that cities will be targeted by drone
attacks [3].

However, the skies over a city are traversed by
numerous drones. Realtors use drones to get aerial
shots of properties for sale[4], insurance companies
use drones to look for undeclared pools and property

XXXX-XXX © 2021 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000
Authors are listed in alphabetical order, not order of contri-
bution. Work partly funded by ARO grant W911NF2320240.
Thttps://www.indiatoday.in/india/story/drone- attack-initial-
probe-lashkar-role-jammu-and-kashmir-police-chief-
1820679-2021-06-29

Month

Published by the IEEE Computer Society

damage [5], sports arenas use drones to capture
crowd pictures and game plays [6], and more. A major
problem for police and security organizations around
the world is to distinguish the few drones that pose a
threat from the many that are benign. And we need
to do this as early as possible. As stated by defense
experts at the Modern War Institute at West Point?,
“The earlier you detect a threat (drone, rocket, missile,
or artillery), the sooner you can alert the force to seek
shelter while the air defense operators work to employ
their systems to defeat the threat”.

This is the problem that we address in this paper:
developing a machine learning model that takes an
initial part (e.g. the first 5, 10, 20, 30 seconds, ...) of a
drone trajectory as input and predicts if it is threatening

2https://mwi.westpoint.edu/understanding-the-
counterdrone-fight-insights-from-combat-in-irag-and-syria/
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or not. The smaller the “initial” part, the earlier we can
bring a potentially threatening trajectory to the attention
of security agencies. But a small initial part might be
too small to make a good prediction.

Though there has been a great deal of work on
predicting trajectories of moving objects (e.g. mobile
phones [7], drones [8]), there has been relatively little
work on quantifying the threat posed to a city or
geographic area by a drone. To quantify this threat,
we must not only understand the drone’s trajectory, but
also the drone’s capabilities (e.g. payload, battery life,
max speed) and the value of the assets on the ground
that the drone is flying over.

Our DEWS Drone Early Warning System predicts
whether a drone trajectory is threatening or not. DEWS
tries to understand how long we need to observe a
drone flight in order to predict whether the drone poses
a threat or not.

DEWS is novel in several respects. (i) As far as we
know, DEWS is the first framework to predict the threat
a drone flight poses to a city. (ii) It is the first framework
to understand the tradeoff between the time for which
a drone trajectory is observed (the “observation win-
dow”) and threat prediction accuracy. (iii) In addition
to the trajectory, DEWS looks at features about the
drone’s capabilities, violations of no fly zones, assets
on the ground, and more. (iv) DEWS identifies the key
features linked to accurate predictions. We find that
the values of assets on the ground that a trajectory
flies over constitute the single most important feature
in assessing the threat of the trajectory. (v) DEWS
can make predictions with an F1 score exceeding
0.8 in 3 seconds in operational use (after training),
suggesting that it can be used for real-time predictions.
(vi) DEWS has been tested by Dutch police, municipal,
and security officials on 8 months of real trajectories
over The Hague and the results show an F1-score over
0.85.

This paper is organized as follows. The "Related
Work" Section discusses related work. Next, Section
"DTPP: Drone Threat Prediction Problem" formalizes
the problem studied. Our "DEWS Architecture" Section
provides a detailed description of our architecture,
including its features and training process. Section
"Experiments" presents the predictive performance of
11 ML models and a late fusion classifier) as the
observation (i.e. training) window increases. After this,
a "Limitations and Future Work" section describe limi-
tations of the framework.
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Predicting the future location of a moving object has
been explored in various domains [9], [10]. Vision-
based object tracking methods [11] predict the future
location of moving objects. This work has been used
in self-driving cars [10] to create plans based on pre-
dicted future locations of humans and nearby moving
objects. Other research uses historical GPS data to
predict mobility of devices [7].

Numerous papers predict vehicle trajectories by
learning models from historical driving data [12]. Tem-
poral models such as LSTMs with attention networks
[13], [14], [15] have been proposed for trajectory pre-
diction. Recent advances incorporate trajectories of
nearby vehicles to reduce accidents [16]. Drone trajec-
tory prediction has been widely studied across various
applications, including autonomous aerial cinematog-
raphy [17], delivery [8], and search and rescue [18].

There is also work on predicting a mobile phone’s
next location based on historical movement data [19],
[20]. These approaches include sequential pattern
learning techniques to predict a phone’s future location
and/or human movements.

DEWS differs from past efforts in two respects.
First, it predicts if a drone trajectory is threatening
or not, which past works don’t do. Second, DEWS
is the first to study how early in a trajectory we can
make a good prediction. This is particularly important
because timeliness is key in mitigating drone threats.
The identification of a threat is crucial input for the
subsequent command and control process resulting
in some kind of intervention. DEWS not only obtains
features from the drone trajectory, but also from assets
on the ground and the drone’s capabilities. Past work
doesn’t consider assets on the ground.

Suppose C is a city to be protected. We obtain a map
of C containing locations of important national build-
ings, security installations (e.g., police stations, mili-
tary bases), government buildings, hospitals, tourist at-
tractions, entertainment venues, homes, parks, roads,
bridges, utilities, etc.® Once the city C is selected, we
define an asset valuation map Val(C), which assigns a
value to every point within the city. High Val(C) values
corresponds to important locations.

Consider a drone d flying over C. lts trajectory
T4 is a finite sequence (¢, 4), ..., (¢9, t,) where each

SWe used OpenStreetMap https://www.openstreetmap.org.
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FIGURE 1: Sample drone trajectory with its 30-second
restriction. The trajectory data is from a real drone, but
the city was altered for security reasons.

E,‘-’ = (lat;, long;, alt;) is d’s location at time f; in terms
of latitude, longitude and altitude, respectively. The
temporal restriction of a trajectory 74 to time j, denoted
tr(rq,j), is the set {(¢9, )| (49, t;) € t A t; < j}. We use
T to denote a given set of trajectories and we use
tr(T,j) = {tr(r,j) | t € T} to be the restriction of the
trajectories in T to the first j timepoints. Figure 1 shows
a drone’s trajectory 4 and its restriction tr(r4, 30) to 30
seconds.*. As an example, we may wish to predict the
level of threat posed by tr(r4, 30) after the 30 seconds
of the flight. The threat score is given by y(74) € [1, 10].
The higher the threat score, the more threatening the
drone’s trajectory.

The Drone Threat Prediction Problem
(DTPP[lev]) is to learn a function fe, : (d, tr(rq,))) —
{0, 1}, such that f(d, tr(74,/)) = 1 if the threat posed
by 7; > lev, where lev € [1,10].

DTPP can work after any observation window j > 0
after the drone flight begins. This is critical for security.
The earlier predictions are made about the threat level
of trajectories, the earlier security officials can prioritize
their responses.2. Earliness of prediction must be bal-
anced against accuracy of prediction. Understanding
this balance is a major goal of this paper.

Figure 2 shows the DEWS architecture. DEWS uses a
dataset of drone trajectories annotated by Dutch police
and municipality — Table 1 presents a brief overivew.

The Feature Extraction module extracts key fea-

TABLE 1: DEWS Dataset Statistics

Threat Score

Statistic | [1,3] [4,7] [8,10]
Number of Drones | 18
Number of Trajectories | 213 94 42

Avg. Duration (s) | 265 298 286

Avg. Distance (m) \ 4351 988.2 7521
Avg. Altitude (m) \ 62.69 1159 100.7
Avg. Speed (km/h) \ 7.088 14.58 10.41

tures that characterize a drone trajectory. The Threat
Classification module combines the predictions of 11
classifiers to provide a final classification.

Trajectory Training Data
We collected a dataset of 349 drone trajectories to
train DEWS. These trajectories represent all known
recorded drone flights over The Hague captured by
Dutch police and municipality over a period of eight
months. The threat of each trajectory was assessed
on a 1-10 scale by at least one police official. Fifty
trajectories were annotated independently by 2
or more police and municipal officers. To assess
agreement amongst the officials, we computed the
inter-annotation weighted Cohen’s kappa coeffi-
cient of 0.772, indicating substantial agreement
amongst annotators..

Police officials then categorized trajectories as low
threat (score < 4), medium threat (score € [4, 8)), and
high (score > 8) threat.

Feature Extraction
This module extracts 110 features for each trajectory.®

Basic features offer an initial summary of each
trajectory. They include the number of observations,
duration of the flight, distance traveled, and communi-
cation channel used (e.g. radio-frequency, Wi-Fi).

Capability features include physical attributes (e.g.,
weight, dimensions) and performance specifications
(e.g., maximum payload, battery capacity). These fea-
tures are critical for assessing the drone’s operational
limits and the potential threat it may pose.

Altitude features,(e.g., the mean altitude above
takeoff) and speed features (e.g., minimum/maximum
speeds) provide insight into the dynamics of each
trajectory. They are essential for detecting suspicious

4Drone locations may be acquired at irregular intervals.
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FIGURE 2: DEWS Architecture. Data set preparation involves annotating asset values and drone trajectories by

police. Subsequently, DEWS extracts features and trains 11 classifiers M, - -

-, My to yield 11 predictions which

are integrated using late fusion to predict the final threat level. During operational use (after training), an initial
part of a live trajectory is processed to extract features, and the combination of single predictors and late fusion

produces the final threat score.

activities and in ensuring regulatory compliance as
drones may have altitude or speed restrictions.

No-fly Zone features capture the behavior of tra-
jectories in terms of their respect for the law. We
used no-fly zone data®, and defined six features to
quantify the proximity of the trajectory to a no-fly zone,
e.g., whether the drone entered a no-fly zone, the
percentage of time the trajectory was within a no-fly
zone.

Asset-based features (e.g. dams, utilities, govern-
ment buildings, defense sites) also need to be con-
sidered when assessing the threat of a trajectory. We
defined features about the proximity of the trajectory
to these assets (e.g. the maximum/mean asset values
overflown). Asset values were provided by Dutch po-
lice.

Observation history features capture the similarity
between the current trajectory and historical trajec-
tories. Self-similarity features refer to the similarity
between the current trajectory and past trajectories
of the same drone, which can help detect recurring
flight patterns or behaviors that may indicate potentially
benign operations. Cross-similarity features capture
the similarity between the current trajectory and past
trajectories of other drones. This may be useful for
identifying anomalous behavior by comparing it to
known suspicious or dangerous flight patterns exhib-
ited by other devices. Cosine similarity is used in both.

Threat Classification
The Threat Classification module predicts the threat
level (low, medium, high) of a trajectory based on its ex-

8https://www.godrone.nl
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tracted features. To accomplish this, we trained a suite
of 11 well-known machine learning classifiers, encom-
passing both traditional and neural network models.”

For each classifier, we did hyper-parameter opti-
mization and applied feature selection to identify the
most relevant subset of features. The feature selection
process consists of three main steps: (1) removing
constant columns, (2) retaining only one feature from
pairs with a Pearson correlation greater than 0.95,
and (3) selecting the top-k features based on their
Mutual Information (MI) scores, where k is a user-
defined parameter. This approach allowed us to de-
velop specialized models that leverage distinct subsets
of features for the same trajectory, thereby enhancing
model diversity within the suite.

After individually training each model M;, we used
late fusion to combine their predictions. The final threat
score for a trajectory t is computed as a weighted
sum of the probability estimates produced by each
model: y(f) = S°1 Mi(t) - w;, where M;(t) represents
the probability prediction of model M; for trajectory
t, and w; denotes the weight assigned to model M;.
The weights w; were optimized through grid search
to identify the combination of weights that maximized
overall classification performance. This fusion process
enables DEWS to integrate the strengths of multiple
models, ensuring robust and accurate threat classifi-
cation.

"The classifiers used in DEWS are: Logistic Regression, k-
Nearest Neighbors (KNN), Support Vector Machines (SVM),
Decision Trees, Random Forest, Gradient Boosting, Naive
Bayes, AdaBoost, Extra Trees, a Multi-layer Perceptron (MLP),
and a wide-and-deep neural network.
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All experiments were conducted on a computational
platform having a 9th Gen Intel i9-10980XE proces-
sor, 256 GB of RAM, and an NVIDIA RTX A6000.
The codebase involved approximately 2000 lines of
code in Python 3.10. All classification models were
implemented using the Scikit-learn library, expect for
the wide and deep classifier for which we used the
Tensorflow 2 library.

Data Collection

Data about 349 drone trajectories over a Dutch city
was systematically collected by the Dutch police using
the Senhive® commercial drone tracking system. This
system tracks drones by monitoring their communica-
tion frequencies with drone operators, allowing for the
detection and recording of their trajectories within a
radius of 25 km. An anonymized version of this dataset
was provided to the academic part of our team, with
sensitive information such as device IDs replaced with
anonymized IDs. Summary statistics for the dataset are
provided in Appendix.

We developed our own GUIs for annotating asset
values and threat scores associated with the drone
trajectories. When this paper is published, we will
release anonymized versions of the DEWS data.

Experimental Protocol

In our experiments, we address the DTPP problem at
three distinct levels: 3, 5 and 7. This corresponds to
the scenarios detailed as follows:

(i) Low-Threat Prediction (LTP): trajectories with a
threat score in the [3, 10) range (i.e. greater than
or equal to 3 and strictly less than 10) are consid-
ered low threats. The LTP problems predicts no-
threat (score less than 3) and low threat (score
greater than 3).

(i) Medium-Threat Prediction (MTP): trajectories
with a threat score in the [5, 10) are considered
medium threat trajectories. So MTP distinguishes
between medium threats (score of 5 or more) and
other trajectories.

(iii)y High-Threat Prediction (HTP): trajectories with a
threat score greater than or equal to 8 are classi-
fied as threatening, while trajectories with a score
of 7 or less are classified as non-threatening.

By applying the learned predictive models for a
given trajectory, we can uniquely classify a trajectory

8https://senhive.com/sen-id-1
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into one of the four threat levels (no threat, low,
medium, high threat).

These classification tasks are increasingly difficult
due to the skewed distribution of threat labels, with the
HTP setting containing significantly fewer threatening
trajectories compared to MTP and LTP.

We conducted three experiments:

e Early Threat Prediction Evaluation: We assess
DEWS’s capability for early threat prediction by
varying the observation window for each tra-
jectory. Specifically, we analyze each trajectory
t using the first i seconds of a flight, where
i € {1,5,10,20,30, 60,180,360, 720}. This as-
sesses how early accurate predictions about the
potential threat can be made.

e Ablation Study: To determine the relative impor-
tance of different feature types, we systemati-
cally remove each feature type from the model
and retrain the DEWS]If] late fusion predictor.
Performance is then evaluated based on recall,
precision, and F1-scores to identify which fea-
tures contribute most significantly to predictive
accuracy.

e Feature Relevance Analysis: Assuming that fea-
tures selected for classification are the most
relevant for solving the task, we analyze the
features chosen by each classifier during the
feature selection process. For each observation
window, we count how often each attribute is
selected for classification across all classifiers
in the model suite. These counts are then nor-
malized to compute the relative frequency of
each feature category. Specifically, let w denote
an observation window, A = {Fj, F,..., Fn}
represent the set of features and My, Mo, ..., M4
be the classifiers in the model suite. We define:

- N,.(j‘"’) as the count of how often the feature
Fi is selected for classifier M; during M’s
features optimisation process for classifica-
tion, within window w;

- N,.("") as the total count of how often the
feature F; is selected across all classifiers,
ie.

11
(w) (w)
N =SNG,
j=1

To compute the relative frequency f,(W) of the
feature F; for the observation window w, we nor-
malize N,(W) by the total counts for all attributes:

!

(w)

o _ N

i W)
Skt N
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e Runtime: We measure DEWS’s runtime for fea-
ture extraction and classification with late fusion
in operational use (after training).

All experiments were conducted using time series
cross-validation, i.e. we learned a model from an early
set of trajectories and then used them to predict on
later sets of trajectories.

Results

Early Threat Prediction Evaluation

Figure 3 illustrates DEWS’s performance under the
HTP setting. Specifically, Figures 3a, 3b, and 3c depict
precision, recall, and F1-score, respectively, for all 11
classifiers as well as the DEWS late fusion classifier,
DEWSJIf]. These metrics are analyzed by varying the
observation window. Performance comparisons under
MTP and LTP settings are reported in the Appendix.

Finding 1: Late Fusion is the Best Predictor.
Late fusion consistently outperforms the 11 classifiers
across all observation windows, achieving the highest
results in terms of precision, recall, and F1-score. As
shown in Figure 3, within an observation window of
1-30 seconds, DEWSJIf] stabilizes at an F1-score of
approximately 80%, with precision exceeding 90% and
recall around 75%. As the observation window in-
creases, performance shows an upward trend, with the
most substantial improvement occurring between one
minute and three minutes. The best performance is
achieved at the six-minute threshold, where precision
reaches 0.967 and recall 0.869.

Finding 2: Increasing the Observation Win-
dow may Not Improve Performance. Interestingly,
increasing the observation window does not always
lead to improved performance. For example, Figure 3
shows that the highest recall of 0.789 for shorter obser-
vation windows occurs with 5 seconds of observation,
when precision is 0.934 (using our DEWSJIf] classifier).
Both metrics show a slight decline when the window
is extended up to 30 seconds. Moreover, beyond six
minutes, performance deteriorates across all models
and metrics.

Finding 3: Precision is always higher than re-
call. Figure 3 shows that the same time thresholds
yield higher performance in terms of precision com-
pared to recall. For instance, with a short observation
window of 5 seconds, precision reaches 0.934, while
recall is comparatively lower at 0.789. This trend is
consistently observed across all observation windows.
This is due to the imbalance of the data considered
for the HTP problem which causes DEWS to be more
conservative when predicting the the highly threatening
(minority) class. This suggests that DEWS is very
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accurate at detecting highly threatening trajectories
with a very low false positive rate.

This is extremely valuable for police for two critical
reasons: First, it enhances trust in the system, as
the low false positive rate minimizes the likelihood
of unnecessary interventions. Second, in resource-
constrained environments, human assessment of pre-
dicted high threat can be costly and inefficient. High
precision ensures that humans don't get frustrated with
false positives.

Ablation Study

Figures 4a, 4b and 4c show the F1-scores obtained
when removing individual feature categories under the
LTP, MTP, and HTP settings, respectively.

Finding 4: Asset-related features are the most
critical for threat prediction. We see from Figure 4
that with a 5-second observation window, the F1-score
with all features included is 0.723 in the HTP setting,
but decreases to 0.586 when asset features are ex-
cluded, representing a 19% reduction in performance.

Equally surprising are the features that proved to be
less important than we had expected. For example, we
initially hypothesized that no-fly zone features would
play a significant role in threat prediction, yet they had
a relatively minor impact on the model’s performance.
Similarly, we expected the type of drone (e.g., fast
drones with large payloads) to be a key predictor, but
their importance for prediction was small. Additionally,
speed-related features, which we assumed would be
important, turned out to have limited significance in our
experiments.

Overall, these findings support our preliminary hy-
pothesis that the geographical region, represented by
asset-related features, is a key determinant in as-
sessing the threat level of a trajectory, independent
of the drone’s intrinsic characteristics or the specific
properties of the trajectory itself.

Feature Relevance Analysis

The results in Figure 5 (HTP problem) indicate that
as the observation window increases, the importance
of asset-related features becomes more pronounced.
For instance, after a 180 second observation window,
over 60% of the features used for classification belong
to the asset category. Interestingly, within the first 1-
5 seconds of observation, capability-related features
show relatively high importance. The importance of
these features decreases sharply with longer observa-
tion windows. This may be due to the limited informa-
tion available in short observation windows, where the
drone’s capabilities alone serve as a strong indicator
of potential threat.
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Runtime

Figure 6 shows the mean DEWS runtime for feature
extraction and prediction (with late fusion) under the
HTP setting in operational use. The feature extraction
time shows a slight increase with a larger observation
window, reflecting the additional computational load
due to the increased number of trajectory points. In
contrast, the prediction time is not affected by the
length of the trajectory. With an overall classification
time of approximately 3 seconds, the DEWS system
demonstrates its potential for real-time predictions,
enabling trajectory classification after just 3-5 seconds
of observation. This highlights the system’s suitability
for applications requiring prompt decision-making.
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Like all studies, our study can be improved in many
ways. First, we note that we looked at all trajectories
over a city that Dutch police tracked over an 8-month
period. But these may not reflect all possible flights
because of limitations in tracking technology. Second,
once adversaries know about DEWS, they may take
evasive actions to prevent their intentions being pre-
dicted. To some extent, this is mitigated by our finding
that asset value is far and away, the important feature
in assessing threat - and adversaries cannot manip-
ulate that. But the development of ML models that
are more robust to an adversary’s evasion attempts
need to be studied as a next step. Third, there is
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the possibility of collusion. Two or more trajectories
that individually seem non-threatening might collude to
pose a significantly higher threat.

To the best of our knowledge, this is the first paper to
explicitly study the problem of how threatening a drone
flight is to a city or geographic region. We propose
a repertoire of features for quantifying the threat of a
drone flight, build out the first drone threat dataset that
was assessed by police and security officials and will
be made publicly available (with some anonymization
to ensure security), and build the first predictive models
to assess the threat level posed by a trajectory. We are
also the first to show that we can predict threat levels
early, when a trajectory is just underway. With just 5-
10 seconds of trajectory data, DEWS is able to make
predictions of high threat levels with an F1-score over
0.8. And these predictions take only a few seconds
to make. Predictive accuracy goes up till about 5-6
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minutes of the trajectory is observed. This enables
DEWS to continuously provide forecasts to security
officials after 5 seconds of the flight is observed and
they can decide on their response depending on their
own judgement and knowledge of context. DEWS also
allows predictions to be tailored to a specific context
and threat assessment. In other words, given a specific
threat assessment, particular assets (on the ground)
or capabilities (of drones) may be valued differently —
and DEWS will still work.

Our biggest new finding is that the key determinant
of the danger posed by a trajectory is not the trajectory
itself, but the values of the assets on the ground that
a trajectory flies over.
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