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Introduction and Motivation



Why We Are Interested in New Tracking Approach?

I A challenging problem: how to track groups of dispersed
crowds from aerial viewpoint?

I Existing Object Trackers may not be able to adapt to our
problem.

I Issues with Single Object Trackers (SOT)
I It can not adapt to crowd group deformations or reformations

because they might move sparse.
I The tracker memory can not scale according to the crowd

shape changes

I Issues with Multi-Object Trackers (MOT)
I Our dataset will have a number of people to track. MOTs will

fail to scale tracking each person simultaneously.
I It may not be able to handle crowd dispersion, i.e., split into

several groups suddenly because it can not connect the relation
between ‘multiple targets.’

To tackle these issues, we propose a novel dataset and benchmark,
followed by a tracking algorithm that learns end-to-end.
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A Quick Discussion About Our Dataset and Benchmark

I Dataset

I Existing datasets deal with object tracking in a generalized
manner e.g. not crowd specific

I Lack of crowd group tracking benchmarks from aerial
viewpoint

I The proposed dataset and benchmark: UUCT
I Unreal UAV Crowd Tracking
I Built with Unreal Engine
I Baseline benchmark
I Photorealistic synthetic images
I Automated ground truth generation
I Rich in crowd-specific attributes
I Evaluated on existing tracking algorithms and HyMP
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Development of The Simulator Pipeline

I Built with Unreal Engine 4

I Uses Microsoft AirSim plugin for UAV deployment, control
and image capturing

I AI controlled NPCs for directed/randomized movement
around the levels

I A baseline benchmark
I No environmental clutters/props
I The complexity of the level design can be increased to make

the benchmark more difficult in the future
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Level Design and Dataset Generation

I Divided into two components

I Setting up the paths
I Placing the NPCs on the level

I Images captured using AirSim Python API
I RGB
I Segmentation
I Depth Perspective

I Segmentation images used to compute bounding boxes around
crowd groups

I Individual bounding boxes processed to obtain a single Ground
Truth Bounding Box which should encompass the largest
crowd

I The frames are combined into a single video

I We will demonstrate the entire process at the end, stay tuned!
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Level Design and Image Capturing (continued)

I Time Dilation is employed while capturing images

I Time dilation implies “slowing down” the simulation world
I 1 second elapsed in simulation world clock = n seconds

elapsed in real world clock; n > 1
I The AirSim API cannot maintain stable frame rates if this is

not done

I UAV controlled via RC or the API
I Move around the world to capture images of crowd groups
I Possible to maintain stable viewpoint at static height as well
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Ground Truth Generation Pseudo code



Generated Ground Truth Evaluation

I We hire individuals to annotate the dataset

I They should place bounding box around the crowd group they
believe to be the largest

I This is subjective by nature

I We measure the Intersection-over-Union of:
I The generated ground truth bounding box of each frame
I The human annotated bounding box of each frame

I Compute 1 - IOU (Inverse of IOU / Overlap Error)

I Compute the average of errors in each sequence of frames
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Ground Truth Results

Figure: Good cases where human annotation and computed ground truth agree



Ground Truth Results (continued)

Figure: The algorithm picks a larger box, where human annotator believes the
person at the bottom should be skipped for a proper box



Ground Truth Results (continued)

Figure: The algorithm fails to pick the proper groups of crowds and ends up
selecting a smaller crowd group



If Ground Truth can be computed, why a tracking
algorithm is required?

I A valid question

I Vision data based ground truth

I Erratic at times due to changes in vision properties

I By contrast, a tracking algorithm
I can learn the changes in the patterns
I can also maintain a stable bounding box on the target for a

longer time
I visual servoing techniques are benefitted from stability of the

bounding box
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longer time
I visual servoing techniques are benefitted from stability of the

bounding box



Our Tracking Algorithm: Hybrid Motion Pooling



Baseline: Discriminative Model Prediction (DiMP)

I Has two fundamental components: model initializer and
optimizer.

I Trained model weight: f = ρ(χsample)

I Training sample pairs: χsample = {(vj , cj )}m
j=1

I vj : extracted visual features. cj ∈ R2: centroid of target.

I Loss is calculated as:

` (f ) =
1

|χsample |

m∑
j=1

‖∇ (vj ∗ f , cj )‖2 + ‖τ f ‖2

I f is iteratively updated offline based on m samples.

I Issue: Can not scale to groups or multiple human interactions.

I Solution: Incorporate Spatio-Temporal Graphs!
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Spatial Graph Learning

I Goal: Capture spatial interaction between humans by building
a graph ΦS .

I At time step t: γt = {(ϑ1
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t )}, where
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I Build graph based on Intersection over Union (IoU) weights:
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Adaptive Crowd Group Learning
I Connect the frames with pair-wise cosine similarity as:

ΦT
tij

=
ecos(ϑi

t ,ϑ
j
t+1)∑nt +1

j=1 e
cos(ϑi

t ,ϑ
j
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)

I ΦT
tij
∈ Rn×n+1 is temporal adjacency matrix element at (i , j)

I Merge spatial and temporal graph as:

ΦST =


ΦS

1 ΦT
1 0 · · · 0

0 ΦS
2 ΦT

2 · · · 0
0 0 ΦS

3 · · · 0
...

...
...

. . . 0
0 0 0 · · · ΦS

t


I ΦST ∈ RN×N is composed of ΦS

t and ΦT
t

I Update using GCN and get Λ ∈ RT×dm:

Cl+1 = σ(Cl + λ̄−
1
2 ΦSTλ̄−

1
2ClW l )
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Hybrid Motion Pooling

I Combine Λ with f from DiMP at each timestep using
low-rank bilinear pooling as:

βi = σ (Wf f )� σ (WΛΛi )

I Calculate final filter ∂T by performing temporal max-pooling:

∂T = MaxPoolT ([β1, β2, . . . , βT−1]) ∈ R1×DΛ

I dimension of DΛ does not depend on training video length T

I T : temporal information for HyMP. m: for DiMP
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Offline Training

I Initially, pre-train the DiMP weight model f from the UUCT
dataset for T = m = 10.

I For test window pairs, loss is calculated as:

`t arg et =
1

N

N∑
i=1

m∑
j=1

∥∥κ (vj ∗ ∂ i
T , gcj

)∥∥2

I

κ (v , c) =

{
v − c , if c > ε
max(0, c), otherwise

I `final = η`t arg et + `bb

I `bb is learned according to IoU overlap
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Online Tracking and Algorithm
Algorithm 1 Online HyMP Tracking Algorithm

Input : Initial Trained Model weight ∂T , Initial Test sample χtest =
(v0, c0). New frames vq where q > 0

Output: Estimated new positions with updated model

1 χsample ← augment χtest = (v0, c0) pair into 10 samples
2 γ0 ← apply detector and fetch feature, box pair from χtest

3 γ ← repeat γ0 10 times
4 ∂T ← forward pass χsample and γ to the model ρ and perform 10

training iterations
5 repeat

/* bounding box prediction stage */

6 y tc ∈ R2 ← Perform convolution on δ(vq) ∗ ∂T

7 ybb ∈ R4, pq ← Regress candidate boundinng boxes and choose
one with the highest confidence score.

8 plot ybb in the frame vq

/* model update step */

9 if pq > ε then
/* append frame (+) to memory */

10 χsample ← χsample + δ(vq)
11 γt ← feature, box pair for vq

12 γ ← γ − γt

13 end
14 if length(χsample) > 50 then

/* remove frame (-) from memory */

15 χsample ← χsample − v0

16 γ ← γ + γ0

17 end
18 if 30 new frames are appended then
19 ∂T ← forward pass χsample and γ to the model ρ and perform

1 training iteration
20 end

21 until Until novel vq without bounding boxes is received



Experimental Evaluation

Table: Comparison of algorithms’ AUC on the benchmark datasets. For
VOT2018, we compared EAO score [KLM+18]. HyMP-X is HyMP with
Xception [Cho17] as backbone feature extractor

Tracker VOT-2018 OTB100 UAV123 UAV20L DTB70 UUCT

Correlation Filter Trackers

Staple [BVG+16] 16.9 58.6 45.0 33.1 35.1 19.6
SRDCF [DHSKF15] 11.9 59.8 46.4 34.3 36.3 20.3
STRCF [LTZ+18] 14.3 64.1 48.1 35.4 40.7 20.3

Tracekrs applied Correlation Filter on deeply learned features

HCFT [MHYY18b] 19.9 64.7 48.6 36.8 41.5 22.7
LCT [MHYY18a] 22.1 65.2 49.4 35.9 43.1 25.5

Tracekrs exploited end-to-end deep learning pipeline

GCT [GZX19] 27.6 64.8 50.8 46.1 44.2 27.2
UPDT [BJD+18] 38.3 70.2 54.5 49.5 45.7 28.1

DiMP-18 [BDGT19] 40.2 66 64.3 51.7 46.9 29.8
DiMP-50 [BDGT19] 43.1 68.4 65.4 52.8 47.5 30.6

End-to-end HyMP Tracker (ours)

HyMP-18 40.1 66.8 66.2 52.5 47.1 31.7
HyMP-50 42.8 69.1 67.6 52.9 48.6 32.9
HyMP-X 43.6 69.4 68.2 53.7 49.2 34.0



Algorithm Performance Visualization on UUCT Dataset
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Figure: Overall benchmark of SOTA trackers on UUCT
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Figure: Benchmark on Crowd Split and Dispersed Out of View (CSDOV)



Thank You!
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