
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Defending a city from multi-drone attacks:

A sequential Stackelberg security games approach

Dolev Mutzari a, ,∗, Tonmoay Deb b, Cristian Molinaro c, , Andrea Pugliese c, ,

V.S. Subrahmanian b, Sarit Kraus a,

a Department of Computer Science, Bar Ilan University, Israel
b Department of Computer Science, Northwestern University, IL, USA
c DIMES Department, University of Calabria, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Multi-drone attacks

Security games

Sequential games

To counter an imminent multi-drone attack on a city, defenders have deployed drones across
the city. These drones must intercept/eliminate the threat, thus reducing potential damage from
the attack. We model this as a Sequential Stackelberg Security Game, where the defender first
commits to a mixed sequential defense strategy, and the attacker then best responds. We develop
an efficient algorithm called S2D2, which outputs a defense strategy. We demonstrate the efficacy
of S2D2 in extensive experiments on data from 80 real cities, improving the performance of the
defender in comparison to greedy heuristics based on prior works. We prove that under some
reasonable assumptions about the city structure, S2D2 outputs an approximate Strong Stackelberg
Equilibrium (SSE) with a convenient structure.

1. Introduction

There has been a lot of recent concern about multi-drone attacks [1--8], especially in highly populated urban areas where not all
countermeasures can be used [7]. Drones can target centers of government and severely damage critical infrastructure (e.g., utilities).
It has been proposed [1,5,4,7] that the city can be defended with drones to counter the attacks and reduce damage to life and property.
As drones are cheap, accessible, and can maneuver above city buildings, effective defense should be equally affordable, and free from
ground-based constraints.

Therefore, in this work, we focus on defending against multi-drone attacks on large-scale cities, using defense drones. It is clear
that certain locations in the city are more attractive to attack for the attacker and hence more critical for the defender to protect. The
goal is therefore to minimize damage rather than to catch the attacker drones as fast as possible. Finally, while aerial drones can be
relatively easy to purchase, they are subject to battery and payload constraints.

Stackelberg security games (SSGs) offer a framework to optimize the allocation of defense resources against strategic adversaries.
[9,10] provide an extensive overview of SSG applications successfully deployed to date. An SSG consists of a defender with some

* Corresponding author.

E-mail addresses: dolevmu@gmail.com (D. Mutzari), tonmoay.deb@northwestern.edu (T. Deb), cmolinaro@dimes.unical.it (C. Molinaro),
andrea.pugliese@unical.it (A. Pugliese), vss@northwestern.edu (V.S. Subrahmanian), sarit@cs.biu.ac.il (S. Kraus).

https://doi.org/10.1016/j.artint.2025.104425

Received 2 July 2024; Received in revised form 23 September 2025; Accepted 25 September 2025

Artiϧcial Intelligence 349 (2025) 104425

Available online 6 October 2025
0004-3702/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://orcid.org/0000-0003-1003-0732
http://orcid.org/0000-0003-4103-1084
http://orcid.org/0000-0003-4385-958X
http://orcid.org/0000-0003-4672-623X
mailto:dolevmu@gmail.com
mailto:tonmoay.deb@northwestern.edu
mailto:cmolinaro@dimes.unical.it
mailto:andrea.pugliese@unical.it
mailto:vss@northwestern.edu
mailto:sarit@cs.biu.ac.il
https://doi.org/10.1016/j.artint.2025.104425
https://doi.org/10.1016/j.artint.2025.104425
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2025.104425&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/

D. Mutzari, T. Deb, C. Molinaro et al.

defense resources protecting multiple targets against a strategic attacker. The defender commits to a mixed allocation strategy, and
the attacker best responds by attacking the target that maximizes her utility.

Many extensions of the original SSG model [11] exist today, e.g. bounded rationality attackers [12--16], partial information [17,18,
15], defense schedules [19,20], heterogeneous resources [19], multiple defenders [21--23] and attackers [24], attackers with multiple
resources [25], and repeated SSGs [26]. Nevertheless, most research is on Stackelberg equilibria in normal-form games: the defender
commits to a mixed strategy, the attacker best responds, and the expected utilities are then directly determined. In particular, the
attacker has a single opportunity to attack.

To defend a city from multi-drone attacks,1 we use sequential SSGs, in which the targets are nodes in a graph, which both players’
drones traverse. In particular, we model this as an extensive-form game. The attacker’s drones are subject to payload and battery
capacity constraints.

1.1. Related work

Defending against swarm aerial drone attacks has been studied extensively �- [4,7] provide a recent overview. In a drone swarm,
each drone acts in real-time based on its local observation of the environment, including neighboring drones. Modeling attacker
drones as a swarm is limiting since an attacker with sufficient computational and technological resources can conduct coordinated
attacks to increase its utility. For similar reasons, while defense using a drone swarm is more scalable with the number of drones,
both computationally and from practical perspectives, it is less effective than a coordinated multi-drone defense mechanism.

Past research on drone swarm attacks can be roughly split into three domains: (i) detection mechanisms focusing on identifying an
incoming attack, tracking and classifying air-drones [3,27], (ii) quickly assessing whether a tracked drone is threatening or not [28],
and (iii) defense mechanisms that seek to counter and protect against threatening drone attacks [1,2,4,6]. The growing body of work
on detection mechanisms is complementary to this work, justifying the assumption that attack drones can be monitored.2

Next, we briefly cover the gaps and limitations of defensive mechanisms other than using defense drones. GPS jamming / spoofing
(used e.g. in [2]) cannot tackle drones that use other navigation methods (visual, radar, etc.), and RF jamming is not effective against
autonomous malicious drones. Furthermore, anti-jamming/spoofing techniques may undermine their effectiveness. In addition, these
methods may jam civilian applications (e.g., mobile phone communications). We refer to [7] for further discussion and focus on the
defensive drone swarm literature.

[1,5] and [29] study defense using a drone swarm. These works mostly focus on coordinating defensive drones, and the attacker
model is limited. First, only a single attacker drone is considered. Second, it is assumed that the attacker drone is nearby, and was
detected before causing any damage. This might work for protecting a facility of interest, but spreading them would enable covering
much more ground. Third, once it is detected, the defensive drone swarm assumes the attacker drone follows a straight projectile3

to predict its future location and catch it rapidly. Obstacles might hinder such movement of the attacker, and more importantly, the
attacker is interested not only in evading the defensive swarm but also in striking targets, otherwise it would not take off to begin
with. [30,31] alleviated the assumption of straight-line movement by learning from simulations using Deep Reinforcement Learning.

The above works fall under multi-pursuer multi-evader differential games [32], where each player decides on a continuous function
over time, called control that must admit certain constraints. [33] pairs the pursuers and evaders thereby reducing the problem into
a single pursuer single evader game, and we follow a similar approach. Differential games (DGs) can be roughly divided into two
forms: open-loop DGs where the controls depend only on time and initial game state and there is no dependence on the current game
state, and closed-loop DGs where controls may be a function of the continuously evolving state.

In our setting, we want the defender to be closed-loop and utilize recent work on detecting and monitoring attack drones, whereas
the attacker should be open-loop as it does not know the defense drone locations. Another well-studied family of evasion games are
cops and robbers [34], traversing a graph. The locations of each cop and robber are typically visible. There are works on invisible
robbers [35--37], but not on invisible cops. [35] also considers a drunk robber, which effectively does not take the cops’ locations into
account, but instead takes a random walk, and we are interested in a rational attacker. Moreover, the goal in evasion games (both
on graphs and differential games) is to catch the evaders as fast as possible. In particular, they do not take into account rewards and
penalties from successful attacks.

Finally, there has been some work on sequential security games (which is the approach taken in this paper) to model the problem
at hand. This should not be confused with repeated SSGs, which are one-shot games, played multiple times to enable players to gain
information. For instance, [38] studies repeated SSGs with unknown attacker type to handle deception, and [26] studies repeated
SSGs where the attacker does not know the defense mixed strategy initially.

In sequential SSGs [39], the defender and attacker simultaneously traverse a graph. The attacker can attack multiple targets on
her path. As in classical SSGs, the defender commits to a mixed strategy, and the attacker best responds. Unlike traditional SSGs, the
strategy space is huge. [39] assumes: (i) the attacker has one drone, (ii) drones carry unbounded payload, (iii) a solution is offered
only against two sequential strikes, (iv) solutions assume that either defense movement is unrestricted or is prohibited completely.
[40] extended [39] by alleviating (iii), but assumes a zero-sum finite game, where SSE and NE are equivalent [41].

General sequential SGs were first considered in [42]. Exact methods [43,44] do not scale to our setting as they are at best linear in
the game tree. Heuristic algorithms (e.g., [45]), being generic, perform poorly in our setting. They do not exploit the graph structure

1 Our framework also applies to land-based attacks by a coordinated set of attackers, targeting a city with simultaneous or sequential attacks by traversing its roads.
2 In fact, we make the weak assumption that the location of a drone is known only after its first strike takes place.
3 [29] adds a brief discussion on other strategies the attacker might choose.

Artiϧcial Intelligence 349 (2025) 104425

2

D. Mutzari, T. Deb, C. Molinaro et al.

of the problem and lack basic tools (e.g., shortest path and TSP solvers). [46] considers sequential SGs and develops an MCTS-based
heuristic algorithm. Nevertheless, this method is not suitable for finding a Strong Stackelberg Equilibrium (SSE). [47] considered a
discrete-time stochastic Stackelberg game where the attacker has a private type that evolves as a controlled Markov process. They
compute a Stackelberg equilibrium by solving lower dimensional fixed-point equations for each time 𝑡. Their technique assumes the
state to be small.

1.2. Contributions

The main contributions we make are summarized below.

1. We extend sequential SSGs to handle multiple attack/defense drones with payload/battery constraints.

2. We propose Sequential Stackelberg Drone Defense (S2D2), an efficient algorithm to output a defense strategy.

3. We identify conditions for the underlying graph, under which S2D2 outputs an approximate Strong Stackelberg Equilibrium
(SSE), along with an upper bound on the error. We also develop an algorithm to check if a given graph admits such a structure.

4. Though our theoretical results make assumptions to guarantee the existence of approximate SSEs, not all real-world situations
satisfy these conditions. Thus:

• We ran extensive experiments on a dataset of 80 famous world cities (1000s to ∼250K nodes) using two distributions (Zipf and
log-normal) to assign utilities to neighborhoods of the city.

• We conducted a detailed case study of 6 cities (one small and two big US cities, a large and a small city in the Middle East,
a megacity in Asia) using utilities provided by experts, rather than random assignment. Our experiments compare S2D2 to a
heuristic algorithm based on prior works that trades off runtime and defender utility.

• We studied the robustness of the computed approximate SSEs by perturbing the utilities and looking at performance variations.
Our results showed that slightly perturbing game parameters (e.g., penalties and rewards) led to proportional changes in
defender utility.

We conclude that even when theoretical assumptions do not hold, S2D2 still yields good results.

Section 7 contains a deeper discussion of the rationale behind our model design, including justifications for key choices, alternative
approaches with their trade-offs, and other relevant questions. This section also presents non-trivial arguments that further support
our modeling decisions.

1.3. Organization

Section 2 provides a high-level, birdseye view of the overall S2D2 architecture and decision. In particular, it explains how the
different parts of this paper fit together. Section 3 presents the problem of interest, modeled as a sequential SSG. A deeper discussion
of the rationale behind our model design, and comparison with alternative approaches is presented in Section 7. Section 4 then
describes our S2D2 algorithm, which has three steps. First, a ``coarsening'' algorithm (cf. Section 4.1) partitions an input city graph
into clusters (``neighborhoods'' �- clusters of vertices). Then, an approximate solution is computed (cf. Section 4.2), assuming both
the attacker and the defender have one drone and play in one neighborhood. This algorithm is an extension of [19]’s method to
sequential games, where the attacker strategy space becomes overwhelmingly large. We then discuss how to use the solution for the
single drone game to find an approximate solution for the multi-drone game (cf. Section 4.3). This is achieved by generalizing [25]’s
work on multi-resource attacker SSGs to support non-linear utilities. S2D2 uses this method to decide the allocation of defense drones
into neighborhoods. Section 5 proves that under a set of conditions on a coarsened graph, S2D2 is sure to output an approximate
SSE, and Section 6 presents experimental results. Finally, Section 8 outlines our conclusions.

2. Birdseye view of S2D2

In this section, we present a birdseye view of the S2D2 system and describe its architecture (cf. Fig. 1). S2D2 contains the following
components.

• Cities represented as graphs. We represent cities being protected as a graph. Each node in the graph represents a region on the
ground. Adjacent nodes in the graph represent adjacent regions on the ground, i.e., regions that share a common border.

• Coarsening a graph for scalability. Because cities can be huge (the number of vertices in our dataset vary from 2.2K to 277K
and the number of edges vary from 3.4K to 405K), game-theoretic models will not scale. Because of this, we coarsen a graph into
neighborhoods. A neighborhood consists of a connected set of nodes in the city graph. We will require coarsenings to satisfy some
desired properties (discussed further below). An algorithm to find a good coarsening is described in Algorithm 2 in Section 4.1.

• Single-Defender, Single-Attacker Game Per Neighborhood. Next, we look and ask the question: if a single defender and a
single attacker drone are in a given neighborhood, what strategy would maximize their respective utilities? We solve this problem
by building on top of the results of [19]. However, fixing the coarsening first and then solving a single attacker single defender
problem could lead to suboptimal solutions. The attacker is not formally restricted to place each drone in a single neighborhood
throughout the game, and it may also be suboptimal for the defender to do so. The coarsening algorithm is therefore responsible
to correctly capture the attacker and defender incentives, and provide a corresponding coarsening of the graph. We propose

Artiϧcial Intelligence 349 (2025) 104425

3

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 1. S2D2 Architecture.

the concept of a 𝛿-coarsening that ensures several desirable properties of the coarsening. We then design an algorithm to find a
𝛿-coarsening (Algorithm 2).

• Solving the Meta Game. Once we understand the utilities of the single attacker, single-defender game, one in each neighborhood,
we need to determine where the defender must place his/her defender drones. The third part of the S2D2 algorithm addresses
this problem (Algorithm 6) using a mixed strategy. This will be discussed further in Section 4.4.

3. Sequential SSGs

We start by briefly overviewing sequential SSGs in the context of our problem. In sequential SSGs, the defender may re-distribute
its defense drones after a successful attack. While doing so, the defender knows the attacker drones’ location and which targets were
destroyed. Meanwhile, the attacker may select and start moving toward other potential targets. The game continues until all attacker
drones are either caught, out of battery, or out of payload. The attacker may only attack targets close to her current position. Formally,
the game consists of:

1. An undirected graph 𝐺 = (𝑉 ,𝐸), where:

• 𝑉 = {1,… ,𝑚} is a set of 𝑚 target nodes.

• 𝐸 is a set of undirected edges between targets.

2. 𝑅𝑎 ∶ 𝑉 →ℕ and 𝑃 𝑑 ∶ 𝑉 →ℤ<0 map each target to the attacker reward and defender penalty, respectively,4 from an attack on a
given node 𝑣 ∈ 𝑉 .

3. 𝐴,𝐷 ∈ℕ are the number of attacker and defender drones, respectively.

4. The payload 𝑃 ∈ ℕ each attacker drone is able to carry. This equals the maximal number of attacks each drone can pull-off (if
not caught or run out of battery).

5. The battery capacity 𝐵 ∈ ℕ each attacker drone has. This equals the maximal total distance it can travel (if not caught). We
assume traversing an edge 𝑒 ∈𝐸 takes one unit of battery (adding 0-rewarded/penalized nodes along a long edge if necessary),
as well as staying (or loitering) over a node.

Assumptions. We assume the defender knows (𝐴,𝑃 ,𝐵) and the current location of each attacker drone at all times after the first
strike by that drone. Defense drones also have a battery capacity 𝐵. Hence, without loss of generality, the game ends after 𝐵 steps.
The attacker only knows the number of defense drones 𝐷 at the beginning of the game. Attacker drones do not know the locations
of defense drones unless they meet at a node �- this is reasonable as a defender can deploy sensor and other assets in her city. When
this occurs, the attacker drone is destroyed. Attacker drones are not informed when other attacker drones are eliminated.

4 Unlike traditional SSGs, we set attacker penalties and defender rewards to zero (𝑃 𝑎 = 𝑅𝑑 = 0) since the attacker is already penalized when caught, as it cannot
attack any more targets. Similarly, the defenders are rewarded when they catch the attacker as doing so prevents future strikes.

Artiϧcial Intelligence 349 (2025) 104425

4

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 2. (a) Visualization of Defender Strategy. (b) Visualization of Attacker Strategy.

3.1. Defender and attacker strategies

The defender knows the location of some attacker drones and can leverage this information. Formally, a pure defender strategy
𝑠𝑑 ∈ 𝑑 is a 𝐵-tuple of functions (𝑠𝑑1 ,… , 𝑠𝑑

𝐵
), specifying its strategy at each time-step. The first strategy 𝑠𝑑1 ∈ 𝑉 𝐷 specifies the start

position of each defense drone. At any step 1 < 𝑡 ≤ 𝐵, the function 𝑠𝑑
𝑡

determines the next step of each drone given the current state
of the game, which includes:

• Last location of each defense drone (𝑣𝑑1 ,… , 𝑣𝑑
𝐷
) ∈ 𝑉 𝐷 .

• Last location of each observed attack drone (𝑣𝑎1,… , 𝑣𝑎
𝐴
) ∈ (𝑉 ∪ {⊥,†})𝐴. We use the special symbol ⊥ for unknown location (no

strike yet), and † for eliminated.

• Subset of destroyed targets 𝐼𝑡−1 ⊆ 𝑉 (where 𝐼0 = ∅).

In a single step, a drone at location 𝑣 ∈ 𝑉 can only reach neighboring locations in graph 𝐺, i.e. 𝑁[𝑣] ∶= {𝑣′ ∈ 𝑉 ∶ {𝑣, 𝑣′} ∈
𝐸} ∪ {𝑣}. The function 𝑠𝑑

𝑡
outputs the new location of each defense drone (𝑣̃𝑑1 ,… , 𝑣̃𝑑

𝐷
) where 𝑣̃𝑑

𝑖
∈ 𝑁[𝑣𝑑

𝑖
] for each 1 ≤ 𝑖 ≤ 𝐷.5

Fig. 2(a) provides a visualization (from our S2D2 system) of the defender’s strategy overlaid over a map of a city. The locations of
defender drones (blue) and attacker drones (red) as well as the destroyed parts of the city are shown as icons. The defender’s strategy
specifies a function that answers the following question: given a picture like the one depicted, where should the blue drones move to
next?

Fig. 2(b) shows the attacker strategy. For each attacker drone (shown in red), a flight path is specified (shown for one red drone
in Fig. 2(b) as a red arrow). In addition, the strategy specifies where each attacker drone will actually target with one unit of payload.
In Fig. 2(b), we see two locations where payload is used by this attacker, marked by an explosion icon. To keep the figure simple, we
do not show these flight paths and payload utilization for the other attacker drones depicted. The pure strategies for the attacker are
related to 𝐵-length paths in the graph. We use 𝐵 ∶= {(𝑣1,… , 𝑣𝐵) ∈ 𝑉 𝐵 ∣ ∀1 ≤ 𝑡 < 𝐵 ∶ {𝑣𝑡, 𝑣𝑡+1} ∈ 𝐸 ∨ 𝑣𝑡 = 𝑣𝑡+1} to denote the set
of all paths of length 𝐵 in 𝐺, and let 0 = {∅}. Recall that traversing each edge requires one battery unit, as well as hovering over a
node (𝑣𝑡+1 = 𝑣𝑡).

6 Furthermore, each attacker drone must decide which targets to attack. Let 𝑃 ,𝐵 = {𝐼 ⊆ {1,… ,𝐵} ∣ |𝐼| ≤ 𝑃 } denote
the set containing sets of at most 𝑃 indices along the path of length 𝐵 to be attacked. The set of pure strategies of the attacker is
therefore 𝑎 = (𝑃 ,𝐵 ×𝐵)𝐴.

Utility. Given an attacker (resp. defender) strategy 𝑠𝑎 ∈ 𝑎 (resp. 𝑠𝑑 ∈ 𝑑), we can recursively compute utilities at time 𝑡. Initially,
𝑢𝑎0 = 𝑢𝑑0 = 0. At time 𝑡 > 0, we compute the position of all surviving drones from the specified strategies and the previous drone
locations. We update the utilities 𝑢𝑎

𝑡
= 𝑢𝑎

𝑡−1 + 𝑟
𝑎
𝑡

and 𝑢𝑑
𝑡
= 𝑢𝑑

𝑡−1 +𝑝
𝑑
𝑡

where 𝑟𝑎
𝑡

(𝑝𝑑
𝑡
) is the sum of rewards (resp. penalties) from successful

attacks at step 𝑡 for the attacker (defender). We then nullify the rewards for targets that were successfully attacked at time step 𝑡, and
eliminate any attacker that is either caught or out of payload. Finally, we set 𝑢𝑎(𝑠𝑑 , 𝑠𝑎) = 𝑢𝑎

𝐵
, 𝑢𝑑 (𝑠𝑑 , 𝑠𝑎) = 𝑢𝑑

𝐵
.

3.2. Mixed strategies

The defender may use a mixed strategy. In other words, it may sample its strategy from a distribution 𝐱𝑑 ∈ Δ(𝑑), where Δ(𝑑)
is the set of all probability distributions over 𝑑 . For the special case where 𝐵 = 1 (the non-sequential SSG), we can use a compact
representation 𝐷 ∶= {𝐱 ∈ [0,1]𝑚 ∶

∑
𝑣∈𝑉 𝑥𝑣 ≤𝐷} of the set of defender mixed strategies. A vector 𝐱 ∈ 𝐷 is called a coverage vector,

and it denotes the probability that each node 𝑣 ∈ 𝑉 is covered by some defense drone. Coverage vectors can provably be implemented

5 Note that the game is Markovian: the history of how drones ended up in their last observed location, or the order in which targets have been destroyed, cannot
be utilized against a rational attacker.

6 The sequential SSG has a few natural extensions which we may consider in future work. These include: (i) Heterogeneous drones: The attacker may have drones of
different types, (𝐵1, 𝑃1),… , (𝐵𝐴,𝑃𝐴). (ii) Distances: The edges may be weighted as well, by the distance between its endpoints. Adding 𝑑 − 1 vertices along an edge
with distance 𝑑 will not yield a reduction. Indeed, one has to define a reward over these new vertices, say 0. Still, the defender will know the attacker’s position in
the first step along the split edge. (iii) Velocities: Different drones may fly with different velocities. The velocity may also depend on the percentage of loaded payload.
(iv) Defense schedules: Allocating a defense drone to some target 𝑣 may also protect its neighbors 𝑁(𝑣).

Artiϧcial Intelligence 349 (2025) 104425

5

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 3. A graph and its coarsening into neighborhoods.

by a distribution over deterministic allocation strategies, each using at most 𝐷 resources. This distribution can also be found efficiently,
see [19], Theorem 1.

In Stackelberg games, the attacker can conduct surveillance on the defender’s (mixed) strategy 𝐱𝑑 beforehand and best respond
to it. Assume now the defender and the attacker play mixed strategies over 𝑎,𝑑 , respectively. Given mixed strategies 𝐱𝑑 ,𝐱𝑎, the
utility of the attacker (and similarly the defender) is given by

𝑢𝑎(𝐱𝑑 ,𝐱𝑎) ∶= 𝔼(𝑠𝑑 ,𝑠𝑎)∼𝐱𝑑×𝐱𝑎 [𝑢
𝑎(𝑠𝑑 , 𝑠𝑎)] (1)

=
∑

(𝑠𝑑 ,𝑠𝑎)∈𝑑×𝑎

𝐱𝑑 (𝑠𝑑)𝐱𝑎(𝑠𝑎) ⋅ 𝑢𝑎(𝑠𝑑 , 𝑠𝑎)

Example 1 (Sequential SSG: Toy example). Consider a toy graph 𝐺 = (𝑉 ,𝐸) with 𝑚 = 41 vertices and edges depicted in Fig. 3. Suppose
we set 𝑃 𝑑 ≡ −𝑅𝑎 in our example, and the attacker rewards are set to one for targets 𝑣5 , 𝑣7, 𝑣23, 𝑣28, 𝑣32, 𝑣37, and zero for all the rest.
Suppose the defender and the attacker both have 𝐴 =𝐷 = 2 drones, and that 𝐵 = 4, 𝑃 = 2 for attacker drones.

A defender pure strategy may first place the defense drones on 𝑣3, 𝑣1 respectively. Then, given the attacker position, the strategy
would let each defense drone follow the closest path towards the closest attacker drone. Denote this strategy by 𝑠1

𝑑
. Suppose the

attacker plays strategy 𝑠𝑎 where her drones are at 𝑣37, 𝑣28. The first drone follows path 𝑣37 → 𝑣38 → 𝑣39 → 𝑣32, and attacks 𝑣37 and
𝑣32. The second drone follows 𝑣28 → 𝑣27 → 𝑣1 → 𝑣22 → 𝑣23 and attacks 𝑣28, 𝑣23. In this case, the defense drone starting at 𝑣3 will
not do much, but the defense drone starting at 𝑣1 will catch the drone that started at 𝑣28 before 𝑣23 is attacked. We can verify that
when facing pure strategies, the attacker may always successfully attack two meaningful targets using one of her drones. Instead,
the defender may use a mixture 𝐱𝑑 of 3 strategies, each for instance with probability 1∕3. Suppose 𝐱𝑑 (𝑠1𝑑) = 1∕3, 𝐱𝑑(𝑠2𝑑) = 1∕3 and
𝐱𝑑 (𝑠3𝑑) = 1∕3. In 𝑠2

𝑑
, the defense drones start from 𝑣2, 𝑣3, and in 𝑠3

𝑑
, they start from 𝑣1, 𝑣2. By doing so, there is always a probability

(2∕3 in this case) that a defense drone is ``in the hood''.

In SSGs, the attacker knows the defender’s mixed strategy 𝐱𝑑 ∈ Δ(𝑑), and then best responds to it with 𝑠𝑎 ∈ 𝖡𝖱𝑎(𝐱𝑑). Since the
utility of the attacker from a mixed strategy is the weighted average of the utilities from each pure strategy, she may always choose
a pure strategy that yields the maximal utility. Therefore, w.l.o.g., the attacker’s best response set consists of pure strategies only:

𝖡𝖱𝑎(𝐱𝑑) ∶= argmax𝑠𝑎∈𝑎 𝑢𝑎(𝐱𝑑 , 𝑠𝑎)

When there are multiple targets in 𝖡𝖱𝑎(𝐱), we take the standard approach [48] and assume that the attacker breaks ties in favor
of the defender. The reason is that by reducing the coverage of the desired target by an arbitrarily small amount, the attacker will
attack the desired target and the defender will suffer an arbitrarily small utility loss. We therefore define

𝖡𝖱𝑑 (𝐱𝑑) = argmax𝑠𝑎∈𝖡𝖱𝑎(𝐱𝑑) 𝑢
𝑑 (𝐱𝑑 , 𝑠𝑎).

The set of strategies in 𝖡𝖱𝑎(𝐱) are the ones that are best for the defender. We may then define 𝑢𝑑 (𝐱𝑑) ∶= 𝑢𝑑 (𝐱𝑑 , 𝑠𝑎), 𝑢𝑎(𝐱𝑑) ∶= 𝑢𝑎(𝐱𝑑 , 𝑠𝑎)
for 𝑠𝑎 ∈ 𝖡𝖱𝑑 (𝐱𝑑). This is well-defined as the value is independent of the choice of 𝑠𝑎.

The typical solution concept for SSGs is Strong Stackelberg Equilibrium (SSE).

Definition 1 (Strong Stackelberg Equilibrium). A strategy profile (𝐱𝑑 , 𝑠𝑎) ∈ Δ(𝑑) × 𝑎 is a Strong Stackelberg Equilibrium iff

𝐱𝑑 ∈ arg max
𝐱′
𝑑
∈Δ(𝑑)

𝑢𝑑 (𝐱′
𝑑
) and 𝑠𝑎 ∈ 𝖡𝖱𝑑 (𝐱𝑑).

Artiϧcial Intelligence 349 (2025) 104425

6

D. Mutzari, T. Deb, C. Molinaro et al.

Approximate SSE’s are defined analogously.

Definition 2 (𝜀-Approximate SSE). A strategy profile (𝐱𝑑 , 𝑠𝑎) ∈ Δ(𝑑) × 𝑎 is an 𝜀-approximate SSE (𝜀-SSE) iff

𝑢𝑎(𝐱𝑑 , 𝑠𝑎) + 𝜀 ≥ max
𝑠′𝑎∈𝑎

𝑢𝑎(𝐱𝑑 , 𝑠′𝑎) and (2)

𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) + 𝜀 ≥ max
𝐱′
𝑑
∈Δ(𝑑)

𝑢𝑑 (𝐱′
𝑑
,𝖡𝖱𝑑

𝜀
(𝐱′

𝑑
)),

where 𝖡𝖱𝑎
𝜀
(𝐱′

𝑑
) consists of all strategies 𝑠𝑎 satisfying (2), and 𝖡𝖱𝑑

𝜀
(𝐱′

𝑑
) ⊆ 𝖡𝖱𝑎

𝜀
(𝐱′

𝑑
) consists of all strategies in 𝖡𝖱𝑎

𝜀
(𝐱′

𝑑
) that maximize

defender utility (breaking ties optimistically).

Finding SSE efficiently by solving linear programs. Equation (1) suggests that the defender’s utility is linear with respect to the coverage
vector 𝐱𝑑 . Furthermore, the defender’s strategy space Δ(𝑑) is a polytope. This suggests using linear programming. We extend the
approach in [19] for 𝐵 = 1 to general sequential games as detailed below. We want to compute:

𝐱𝑑 ∈ arg max
𝐱′
𝑑
∈Δ(𝑑)

𝑢𝑑 (𝐱′
𝑑
) = arg max

𝐱′
𝑑
∈Δ(𝑑)

𝑢𝑑 (𝐱′
𝑑
,𝖡𝖱𝑑 (𝐱′

𝑑
)).

The only problem is that the 𝖡𝖱𝑑 (𝐱𝑑) is not linear. Our idea is to solve, for each potential 𝑠∗
𝑎

candidate for 𝖡𝖱𝑑 (𝐱𝑑), the LP (linear
program):

• Maximize 𝑢𝑑 (𝐱𝑑 , 𝑠∗𝑎), subject to:

1. 𝐱𝑑 ∈ 𝐷 .

2. ∀𝑠𝑎 ∈ 𝑎, 𝑢𝑎(𝐱𝑑 , 𝑠𝑎) ≤ 𝑢𝑎(𝐱𝑑 , 𝑠∗𝑎).

That is, we add |𝑎| linear constraints to ensure that 𝑠∗
𝑎
∈ 𝖡𝖱𝑎(𝐱𝑑), and enumerate over 𝑠∗

𝑎
. At the end, we pick the solution that gives

the defender the greatest utility.

Multiple attack resources. In the sequential SSG, we consider multiple attacker drones, that is, multiple attacker resources. In this
case [25] showed that finding SSE is NP-hard. This also implies that the problem of finding sequential SSGs is NP-hard via a reduction
from finding SSE in SSGs with multiple attacker resources. Simply let each attacker drone have a single unit of battery, to make the
game effectively a non-sequential SSG. Nevertheless, NP-hard problems like MILPs (Mixed Integer Linear Programs) are well-studied
and practical solutions have been developed previously. Indeed, S2D2 involves a reduction to a MILP.

Table 1 summarizes the symbols used in this paper. A comprehensive discussion regarding our proposed model is provided in
Section 7.

4. The S2D2 algorithm

The S2D2 algorithm generates a mixed defense strategy through three steps:

1. Coarsening the graph, which involves partitioning it into artificial neighborhoods. The goal is to output a partition such that both
the attacker and the defender are incentivized to spread their drones across different neighborhoods and stay there throughout
the game. The defense (and attack) strategies can then be decomposed into the following two components.

2. Single-Attacker Single-Defender Game per Neighborhood. For each neighborhood, we solve a Single-Attacker Single-Defender
sub-game and compute an approximate SSE. In reality, there is a probability 𝑝̂𝑑 (𝑣̂) ∈ [0,1] that a defender is present in a neigh

borhood. Since this probability is unknown a-priori, it is treated as an unknown variable 𝜆, provided as an additional input
parameter. S2D2 discretizes the interval [0,1] into evenly spaced intervals and solves the problem for each 𝜆𝑖 ∈ [0,1].

3. Solving the Meta-Game. Once we know the defender utilities for each neighborhood, we can solve the problem of assigning
a defender drone to each neighborhood. Basically, each neighborhood is considered as one ``meta''-target. In this step, S2D2
determines a mixed strategy for allocating defense drones to neighborhoods via a reduction to a non-sequential SSG between
a multi-resource defender and a multi-resource attacker. The utility functions for both the attacker and defender are approximated
by piece-wise linear functions, derived from solving the single-defender single-attacker sub-game within each neighborhood, as
a function of the defender presence probability 𝜆.

The high-level pseudocode of the S2D2 algorithm is provided in Algorithm 1.

In reality, the attacker may opt to ignore the coarsening found by S2D2. This may happen either since the attacker is not rational,
or because a ``good coarsening'' does not exist. In such a case, S2D2 randomly picks, for each defense drone, an attacker drone in
its neighborhood, and ignores the rest. In addition, whenever an attacker drone leaves a neighborhood, the defender drone in that
neighborhood halts. When the coarsening admits certain properties, we show in Section 5 that this does not result in a major utility
loss for the defender.

Artiϧcial Intelligence 349 (2025) 104425

7

D. Mutzari, T. Deb, C. Molinaro et al.

Table 1
Symbols used in the paper.

Symbol Meaning
SSSG Model:

𝐺 = (𝑉 ,𝐸) City graph, where 𝑉 = {1,… ,𝑚} is the set of nodes
and 𝐸 is the set of undirected edges

(𝑅𝑎,𝑃 𝑑) ∶ 𝑉 →ℕ ×ℤ<0 Attacker reward and defender penalty functions
𝐴,𝐷 ∈ ℕ Number of attacker and defender drones
𝑃 ,𝐵 ∈ℕ Payload and battery capacity of attacker drones
(𝑣𝑑1 ,… , 𝑣𝑑

𝐷
) ∈ 𝑉 𝐷 Locations of defender drones

(𝑣𝑎1,… , 𝑣𝑎
𝐴
) ∈ (𝑉 ∪ {⊥,†})𝐴 Locations of attacker drones

(⊥ means unknown location, † means eliminated)
𝑠𝑑 = (𝑠𝑑1 ,… , 𝑠𝑑

𝐵
) ∈ 𝑑 Pure defender strategy, where 𝑠𝑑

𝑡
is the policy at time 𝑡

𝑠𝑎 ∈ 𝑎 Pure attacker strategy
𝐱𝑑 ∈Δ(𝑑) Mixed defender strategy
𝑢𝑎(𝑠𝑑 , 𝑠𝑎), 𝑢𝑑 (𝑠𝑑 , 𝑠𝑎) Attacker and defender utilities under 𝑠𝑑 and 𝑠𝑎
𝑢𝑎(𝐱𝑑 , 𝑠𝑎), 𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) Attacker and defender utility under 𝐱𝑑 ∈Δ(𝑑) and 𝑠𝑎 ∈ 𝑎

𝖡𝖱𝑎(𝐱𝑑) ⊆ 𝑎 Set of best attacker responses to defender’s mixed strategy 𝐱𝑑 ∈Δ(𝑑)

Coarsening:
𝛿 Scale parameter, rewards smaller than 𝛿 are neglected
𝑉 = {𝑣̂1,… , 𝑣̂𝑘} Coarsening of 𝐺, a set of disjoint neighborhoods 𝑣̂𝑖 ⊆ 𝑉

𝑎

𝑉
,𝑑

𝑉
Set of pure attacker and defender strategies that
respect the coarsening 𝑉

Single Drone Parameterized Sub-game:
𝜆 A parameter, fixing the probability that a defender is present in a neighborhood
𝑢𝑑 (𝐱𝑑 , 𝑠𝑎, 𝜆), 𝑢𝑎(𝐱𝑑 , 𝑠𝑎, 𝜆) Attacker and defender utilities in a single drone game at a given neighborhood,

under single drone strategies 𝐱𝑑 , 𝑠𝑎, and defender presence probability 𝜆

Multi-Drone Meta Game:
𝑓𝑎 ∶ {1,… ,𝐴}↦ 𝑉 Mapping from attacker drones to attacked neighborhoods
𝑝̂𝑑 (𝑣̂) Probability that a defender is present in 𝑣̂
(𝑓𝑎, 𝑠̂𝑎), (𝑝̂𝑑 , 𝑥̂𝑑) Attacker and defender multi-drone strategies

Algorithm 1 S2D2
S2D2 computes a mixed defense strategy that utilizes a set of defensive drones to protect a city from a multi-drone attack. The
computation takes three steps: (i) Coarsening the city into a set of neighborhoods; (ii) Solving for the single-drone sub-game within
each neighborhood; (iii) Allocating defense drones into neighborhoods.

Require: An undirected graph 𝐺 = (𝑉 ,𝐸);
numbers of attacker and defender drones 𝐴,𝐷 ∈ℕ;

attacker drone’s payload 𝑃 ∈ℕ;

drone’s battery capacity 𝐵 ∈ℕ;

attacker rewards 𝑅𝑎 ∈ℕ|𝑉 | ;
defender penalties 𝑃 𝑑 ∈ℤ|𝑉 |

<0 .

Discretization parameters #𝜆,𝜆𝑐 for the piece-wise linear approximation of the single-drone utility sub-games within each neighborhood.

Ensure: An 𝜀-SSE defense strategy 𝐱𝑑 = (𝑉 , 𝑝̂𝑑 , 𝑥̂𝑑 , 𝜀) and 𝜀, or 𝐱𝑑 and ⊥, where:

𝑉 is a coarsening of 𝐺 and (𝑝̂𝑑 , 𝑥̂𝑑) ∈ Δ(𝑑

𝑉
);

𝑝̂𝑑 ∈ 𝑉
𝐷

is the allocation strategy of 𝐷 drones into neighborhoods of 𝑉 ;

𝑥̂𝑑 is the single-drone defense strategy within each neighborhood of 𝑉 ;

1: Compute a coarsening (𝛿,𝑉)← Coarsening(𝐺,…);
2: for each neighborhood 𝑣̂∈ 𝑉 do
3: Compute piece-wise linear approximations of 𝑢𝑎

𝑣̂
(𝜆), 𝑢𝑑

𝑣̂
(𝜆), the attacker and defender utilities for the single-drone game in neighborhood 𝑣̂, where the defender

is present with probability 𝜆:

4: for 𝜆 = 0
#𝜆
,

1
#𝜆
,… , 𝜆𝑐 do

5: Set 𝑆𝑎 = ScanAttackStrategies(𝑣̂, 𝜆,…) (reduced attack strategy space).

6: Set 𝑆𝑑 = ScanDefenseStrategies(𝑣̂, 𝑆𝑎,…) (reduced def. strategy space).

7: Compute 𝑢𝑑
𝑣̂
(𝜆), 𝑢𝑎

𝑣̂
(𝜆) as in [19] and corresponding mixed strategy 𝑥̂𝑑 (𝑣̂), when restricting the attacker and defender strategy space to 𝑆𝑎,𝑆𝑑 .

8: end for

9: end for

10: Invoke ⟨𝑝̂𝑑 , 𝑓 𝑎⟩← SolveMetaGame(𝑉 ,𝐴,𝐷,{𝑢𝑑
𝑣̂
(𝜆), 𝑢𝑎

𝑣̂
(𝜆)}𝑣̂∈𝑉 , to get the mixed allocation strategy 𝑝̂𝑑 of 𝐷 drones into the neighborhoods of 𝑉 , by solving the

static, multi-resource SSG with respect to the approximate utility functions 𝑢𝑑
𝑣̂
(𝜆), 𝑢𝑎

𝑣̂
(𝜆).

11: In case 𝛿 ≠ ⊥, compute 𝜀 as in Theorem 2, otherwise set 𝜀= ⊥.

12: return 𝐱𝑑 , 𝜀;

Approximations. S2D2 tries to find an 𝜀-approximate SSE, balancing the defender’s computational resources with the approximation
error 𝜀. To achieve this, S2D2 introduces a scale parameter 0 < 𝛿 <max𝑣 𝑅𝑎𝑣, effectively disregarding rewards smaller than 𝛿. As 𝛿
increases, fewer nodes are deemed valuable, allowing S2D2 to focus on a smaller subset of nodes to protect. Consequently, while this

Artiϧcial Intelligence 349 (2025) 104425

8

D. Mutzari, T. Deb, C. Molinaro et al.

simplification reduces computational complexity, it also decreases the accuracy of S2D2’s view of the game, leading to an expected
increase in the approximation error 𝜀(𝛿). However, under certain conditions for the underlying graph, 𝜀(𝛿) can be bounded, which
provides theoretical guarantees for our algorithm. Even when these conditions are not met, empirical results demonstrate that S2D2
performs effectively in practice.

The next 3 subsections describe the three components listed above.

4.1. Coarsening the graph

In this section we introduce the methods used to coarsen the input graph into a set of artificial neighborhoods. Those can be
intuitively thought of as regions that are attractive to the attacker and therefore should be considered by the defender. If there are
more regions than defensive drones, some regions will be covered with a certain probability.

Formally, a coarsening of 𝐺 = (𝑉 ,𝐸) is a set 𝑉 = {𝑣̂1,… , 𝑣̂𝑘} such that 𝑣̂𝑖 ⊆ 𝑉 for each 1 ≤ 𝑖 ≤ 𝑘 and 𝑣̂𝑖 ∩ 𝑣̂𝑗 = ∅ for any 𝑖 ≠ 𝑗. Each
subset in 𝑉 is a neighborhood. A good coarsening is akin to ``zooming-out'', where nearby nodes are merged into a single neighborhood.

Ideally, a ``good'' coarsening (Step 1 of the S2D2 algorithm) cannot be found without simultaneously computing the utilities of the
defender for that coarsening, which is only considered in Step 2 of the S2D2 algorithm. One way to do this is to generate all possible
coarsenings, then find the best defender strategy for each coarsening, and then pick the coarsening and defender strategy that yields
the best utility for the defender. Unfortunately, this is not practical to compute. We therefore introduce the concept of a 𝛿-coarsening
to ensure that a coarsening is ``good'' and has some desirable properties.

The scale parameter 𝛿 controls the granularity of the coarsening. Since S2D2 neglects rewards smaller than 𝛿, increasing 𝛿 reduces
the number of nodes the coarsening algorithm considers. A node 𝑣 is deemed 𝛿-valuable if 𝑅𝑎(𝑣) > 𝛿. The coarsening algorithm then
clusters these 𝛿-valuable nodes. In each cluster, all the 𝛿-valuable nodes are relatively close, while the clusters themselves remain
relatively separated. The resulting coarsening then consists of a set of neighborhoods, each centered around a cluster of 𝛿-valuable
nodes (see Fig. 3).

S2D2 coarsens via two steps, as depicted in Algorithm 2. First, it attempts to detect a ``high-quality'' coarsening, referred to
as 𝛿-coarsening. When a 𝛿-coarsening exists, we prove in Section 5 that S2D2 approximates SSE. A 𝛿-coarsening must satisfy four
conditions: (i) getting from outside a neighborhood to a 𝛿-valuable node within it takes too much battery; (ii) there are sufficiently
many valuable neighborhoods; (iii) a single attacker can collect most 𝛿-valuable rewards in its neighborhood; (iv) the presence of a
defender significantly impacts both attacker and defender expected utility. When a 𝛿-coarsening exists, the first step aims to minimize
𝛿, and does so efficiently by applying a binary search. Indeed, if any of conditions (i)-(iv) are not met for some 𝛿low , they cannot be
met for any 𝛿 < 𝛿low.

If 𝛿low > 𝛿up, a 𝛿-coarsening may not exist at all. To this end, if S2D2 fails to detect a 𝛿-coarsening in the first step, it proceeds to
the second step, where it coarsens the graph using a greedy heuristic. It is important to note that S2D2 works even when no 𝛿-coarsening
exists �- but in this case, the theoretical guarantees do not hold. In the following Example 2 we provide an illustrative example of a
coarsening.

Example 2 (Coarsening). Consider the graph in Example 1, Fig. 3. The gray neighborhood has no valuable nodes and so is removed.
Next, getting from one neighborhood to a valuable node of another requires going through the gray neighborhood, which takes a
prohibitive amount of battery (i). Note that we only consider nodes circled in red when evaluating this condition as other nodes have
no reward. Next, note that a single drone can tackle both red nodes within each neighborhood (iii). Unfortunately, the other two
conditions (ii) and (iv) are not met with the desired constants required for the theoretical proof to hold. As for (ii), since we present
a toy graph as an illustrative example, it only has 3 neighborhoods (and 4 are required). Splitting some neighborhoods into two may
potentially violate (i). Similarly, for (iv), a defender can always stay put on one red node and block the attacker from successfully
attacking both valuable nodes within every neighborhood, yet in this case, it yields a factor of 2 between the utility from a protected
neighborhood and an unprotected one. In more complex games with larger 𝐵,𝑃 values and larger neighborhoods, the gap could be
significantly larger.

Consider an SSG (𝐺,𝑅𝑎,𝑃 𝑑 ,𝐴,𝐷,𝑃 ,𝐵) and let 𝛿 ∈ ℕ. Given 𝑣, 𝑣′ ∈ 𝑉 , we write 𝑣 ∼𝛿 𝑣
′ iff 𝑅𝑎(𝑣′) > 𝛿 and 𝑑(𝑣, 𝑣′) ≤𝐵. Intuitively,

𝑣 ∼𝛿 𝑣
′ means that 𝑣 and 𝑣′ must belong to the same neighborhood of a coarsening of 𝐺 in order to satisfy Condition 1. Let ≈𝛿 denote

the reflexive, symmetric, and transitive closure of ∼𝛿 . Since ≈ is an equivalence relation, 𝑉 ∕ ≈𝛿 is a partition of 𝑉 (into equivalence
classes). Hence, it is a coarsening that maximizes |𝑉 | (for Condition 2a) while satisfying Condition 1. To meet Condition 2b, we sort
the neighborhoods in 𝑉 ∕ ≈ by 𝑢𝑣̂,𝑎1,0, and remove poor neighborhoods until Condition 2b holds.

As 𝑢𝑣̂,𝑎1,0 requires solving an NP-hard problem [49], we use TSP (Traveling Salesman Problem)-solvers to get lower bounds, and
use 𝖻𝖾𝗌𝗍-𝗉𝖺𝗍𝗁(𝑣̂, 𝛿) to refer to the procedure which looks for a shortest path going through all 𝛿-valuable nodes in 𝑣̂. Hence, the
algorithm may fail to find a 𝛿-coarsening although one exists, and instead return a 𝛿-coarsening for some greater 𝛿. In turn, the
resulting coarsening will only be 𝜀(𝛿)-tight. On the other hand, the algorithm is efficient, optimizing on 𝛿 with a simple binary
search. Moreover, it returns an upper bound on 𝛿, which translates (by Theorem 1) to a concrete bound on the loss from respecting
the coarsening, instead of playing an SSE defense strategy. Lastly, the algorithm solves the single-attacker single-defender game in
each neighborhood, as described in Section 4.2, to ensure that defending a neighborhood results with a significant utility change for
both players.

Artiϧcial Intelligence 349 (2025) 104425

9

D. Mutzari, T. Deb, C. Molinaro et al.

Algorithm 2 Coarsening
Coarsens the input graph into a set of neighborhoods. In each neighborhood, the high-valued nodes are relatively close, while also
remaining relatively separated from high-valued nodes in other neighborhoods.

Require: An undirected graph 𝐺 = (𝑉 ,𝐸);
numbers of attacker and defender drones 𝐴,𝐷 ∈ℕ;

attacker drone’s payload 𝑃 ∈ℕ;

drone’s battery capacity 𝐵 ∈ℕ;

attacker rewards 𝑅𝑎 ∈ℕ|𝑉 | ;
defender penalties 𝑃 𝑑 ∈ℤ|𝑉 |

<0 .

Ensure: (𝛿)-Coarsening 𝑉 and 𝛿, or failure.

1: 𝛿low ← 1, 𝛿up ← 1 +max𝑣∈𝑉 𝑅𝑎(𝑣);
2: while 𝛿low < 𝛿up do
3: 𝛿← ⌊(𝛿low + 𝛿up)∕2⌋;

4: 𝑉 ← 𝑉 ∕ ≈𝛿 ;
5: init table 𝑇 ;

6: for each 𝑣̂ ∈ 𝑉 do
7: 𝑇 [𝑣̂]←

∑
𝑣∈𝑣̂.top(𝑃 ,by=𝑅)

𝑅𝑎(𝑣); {sum of top-𝑃 rewards}

8: end for

9: 𝑉 ← {𝑣̂ ∈ 𝑉 ∣ 4
3
𝑇 [𝑣̂] ≥ 𝑇 .max()}; {Remove poor neighborhoods}

10: if |𝑉 | < 4max{𝐴,𝐷} then
11: 𝛿low ← 𝛿 + 1; {Not enough neighborhoods}
12: else if ∃𝑣̂ ∈ 𝑉 ∶ |{𝑣 ∈ 𝑣̂ ∣𝑅𝑎(𝑣) > 𝛿}| > 𝑃 then
13: 𝛿low ← 𝛿 + 1; {Insufficient attacker payload}
14: else if ∃𝑣̂ ∈ 𝑉 ∶ 𝖻𝖾𝗌𝗍-𝗉𝖺𝗍𝗁(𝑣̂, 𝛿) > 𝐵 then
15: 𝛿low ← 𝛿 + 1; {Insufficient attacker battery}
16: else if ∃𝑣̂ ∈ 𝑉 ∶ 3

64|𝑉 | 𝑢𝑣̂,𝑎1,0 ≤ 𝑢
𝑣̂,𝑎

1,1 or 3
8|𝑉 | |𝑢𝑣̂,𝑑1,0 | ≤ |𝑢𝑣̂,𝑑1,1 |+ 𝛿𝑃 then

17: 𝛿low ← 𝛿 + 1; {Defender presence is ineffective}
18: else
19: sol ← (𝑉 , 𝛿);
20: 𝛿up ← 𝛿;

21: end if

22: end while

23: if 𝛿 = 1 +max𝑣∈𝑉 𝑅𝑎(𝑣) then
24: 𝑉 ← K-Means(𝑉 ,num_clusters ∝𝐷,weights ∝ |𝑃 𝑑 |);
25: sol ← (𝑉 ,⊥);
26: end if

27: return sol;

Lines 4--9 of Algorithm 2 return a partition of 𝑉 that satisfies (i), i.e. incentivizing drones to stay in their starting neighborhoods
throughout the game. Line 9 removes ``poor'' neighborhoods that the attacker doesn’t care about. Lines 11, 13, 15, and 17 check if a
𝛿-coarsening exists by checking the other three conditions (ii), (iii), (iv), respectively. The algorithm performs binary search on 𝛿, to
find the smallest one for which a 𝛿-coarsening exists, as the SSE approximation error is linear in 𝛿 (as shown in Section 5). A formal
definition of a 𝛿-coarsening is given in Section 5.

If the condition in Line 23 holds, it means that no 𝛿-coarsening exists. In this case, S2D2 uses weighted K-Means [50], which has
three advantages: (i) it is efficient and simple; (ii) it leverages the planar structure of the graph, and the coordinate-based location
of each vertex in the graph; (iii) it takes the penalties into account, by setting them as the weights. The parameter 𝛿 can be viewed
as a cut-off, where any node with a smaller reward is considered negligible. Hence, S2D2 heuristically assigns 𝛿 as the |𝑉 |𝑃 most
rewarding target, so that each neighborhood has 𝑃 rewards > 𝛿 on average. The number of neighborhoods |𝑉 | is set to be proportional
to the number of available defense drones 𝐷. We test the performance of this algorithm by conducting experiments on real-world
cities in Section 6. Therefore, in what follows, we will seek defense strategies that respect a given coarsening, whether it admits the
strict theoretical requirements or not, as defined below.

Definition 3 (Strategy respecting a coarsening). A defense (attack) strategy respects the coarsening 𝑉 when the following conditions
are met:

1. Every defense (attack) drone stays within its starting neighborhood throughout the game.

2. Every neighborhood contains up to a single defense (attack) drone.

𝑑

𝑉
,𝑎

𝑉
denote the sets of pure strategies that respect the coarsening 𝑉 , for the defender and the attacker, respectively.

Looking ahead, we will show in Section 5 that if a 𝛿-coarsening exists, there exist an 𝜀(𝛿)-SSE in which both the attacker and the
defender respect the given coarsening. Therefore, after computing such a 𝛿-coarsening, S2D2 restricts itself to strategies that respect
the coarsening, which significantly simplifies the analysis and reduces the strategy space. Indeed, it assigns a single drone to each
neighborhood, appointed to defend it throughout the game.

Artiϧcial Intelligence 349 (2025) 104425

10

D. Mutzari, T. Deb, C. Molinaro et al.

4.2. Single-attacker single-defender solution

As mentioned, S2D2 handles each neighborhood separately, protecting it with up to a single drone. Therefore, in this section, we
introduce the defense strategy of S2D2 within a given neighborhood.

Essentially, S2D2 approximates SSE for a single-attacker single-defender game within each neighborhood. Crucially, in the broader
multi-drone, multi-neighborhood setting, the defender’s presence in a given neighborhood is probabilistic. In large cities with limited
defense resources, it is generally expected that neighborhoods are not protected indefinitely. This probability must be taken into
account when considering the single drone game within a given neighborhood, and is therefore introduced as an additional input
parameter, denoted by 𝜆.

Brute force solution. Since the problem is NP-hard,7 we use smart enumeration as 𝑃 ,𝐵 are small.8 We begin with a naive approach,
which linearizes the problem. We compute the matrices 𝑈𝑎

𝜆
, 𝑈𝑑

𝜆
of the attacker and defender utility for each pair of pure strategies.

Note that those values depend on 𝜆, the defender’s presence probability. We then omit any dominated pure strategies, and find SSE
(𝐱∗

𝑑
, 𝑠∗
𝑎
) in a similar manner to the single-attacker single-defender SSG (cf. [19]), i.e., we enumerate the set of attacker pure strategies,

and for each pure strategy 𝑠′
𝑎
, we then solve the following LP that maximizes the defender utility, under the constraint that 𝑠′

𝑎
is the

best response:

• Maximize 𝑢𝑑 (𝐱𝑑 , 𝑠′𝑎, 𝜆), subject to:

1. 𝐱𝑑 ∈ 𝐷 -- Now it is the set of combinations over all non-dominated defense strategies.

2. For each 𝑠𝑎 ∈ 𝑎, 𝑢𝑎(𝐱𝑑 , 𝑠𝑎, 𝜆) ≤ 𝑢𝑎(𝐱𝑑 , 𝑠′𝑎, 𝜆).

Note that 𝑢𝑑 (𝐱𝑑 , 𝑠𝑎, 𝜆) is a linear combination of values from 𝑈𝑑
𝜆

, according to 𝐱𝑑 , and the same holds for 𝑢𝑎 and 𝑈𝑎
𝜆

.

Finally, we pick 𝐱∗
𝑑
, 𝑠∗
𝑎

that maximizes the defender utility. The complexity is |𝑎| × LP(|𝑑 |, |𝑎| + |𝑑 |). Namely, for each
attacker strategy, we solve a linear program with |𝑑 | variables and |𝑎| + |𝑑 | constraints. Next, we improve by reducing the
relevant strategy space for both the attacker and the defender.

Reducing the attacker strategy space. By narrowing down the strategy space, we expect to move away from the optimal solution and
trade-off run time vs. solution quality.

When 𝜆 is small, we know that 𝑠∗
𝑎

is more greedy, as the (1 − 𝜆) term dominates. Hence, 𝑠∗
𝑎

largely ignores the defender. This
may eliminate most of the attacker’s possible strategies. 𝜆 should anyway be small when there are sufficiently many neighborhoods
that are attractive to the attacker. When this is not true, the problem is smaller, and S2D2 takes a random sample of the strategy
space, trading-off runtime and quality of the solution. So we may only enumerate a smaller space of possible attacker strategies. To
some extent, this can be done without damaging performance. Suppose 𝑠𝑎, 𝑠′𝑎 ∈ 𝑎 so that 𝑢𝑎(⊥, 𝑠′

𝑎
) ≤ (1 − 𝜆) ⋅ 𝑢𝑎(⊥, 𝑠𝑎). Then for any

strategy 𝐱𝑑 ∈Δ𝑑 , 𝑢𝑎(𝐱𝑑 , 𝑠′𝑎, 𝜆) ≤ 𝑢𝑎(⊥, 𝑠′
𝑎
) ≤ (1 − 𝜆) ⋅ 𝑢𝑎(⊥, 𝑠𝑎) ≤ 𝑢𝑎(𝐱𝑑 , 𝑠𝑎, 𝜆). Therefore, if the attacker’s utility from 𝑠𝑎 when facing a

defender with probability 𝜆 is at least the utility from playing 𝑠′
𝑎

against no defender, we can strike out the strategy 𝑠′
𝑎
, as 𝑠𝑎 strictly

dominates it.
When there is a small subset of crucial nodes in each neighborhood which are far apart so that an attacker drone must follow an

almost optimal path in order to pass through a couple of them, the number of candidate attacker strategies drops significantly. When
this is not the case, though, S2D2 randomly samples from the large space of possible strategies. This is depicted in Algorithm 3.

Algorithm 3 ScanAttackStrategies
Scans for a threshold of single-drone attacking strategies within a given neighborhood. Strategies that are dominated by a greedy
attack that ignores the defender are filtered out.

Require: A weighted, undirected graph (𝑣̂,𝐸|𝑣̂ ,𝑅|𝑣̂);
Defender presence probability 𝜆;

attacker drone battery capacity and payload 𝐵,𝑃 ∈ ℕ;

Threshold th on the number of output attack strategies;

Ensure: attacker drone possible strategies 𝑆𝑎 ⊂ 𝑎 .

1: Compute 𝑢𝑎max = max𝑠𝑎∈𝑎 𝑢𝑎
𝑣̂
(𝑠𝑎,⊥), the maximal attacker utility at 𝑣̂ when facing no defender;

2: Set 𝑆𝑎 ∶= {𝑠𝑎 ∈ 𝑎|𝑢𝑎
𝑣̂
(𝑠𝑎,⊥) ≥ (1 − 𝜆)𝑢𝑎max};

3: if |𝑆𝑎| > th then
4: return A random sample of size th from 𝑆𝑎 ;

5: end if

6: return 𝑆𝑎 ;

7 The problem is NP-hard even for 𝜆 = 0, i.e., when solving the optimization problem for the attacker facing no defender. For example, if 𝑃 = 𝐵 = |𝑣̂|, deciding
whether the attacker has a strategy with utility 𝑢 =∑

𝑣̂∈𝑉 𝑅(𝑣̂) is equivalent to deciding whether a Hamiltonian path exists in graph (𝑣̂,𝐸|𝑣̂).
8 This assumption is reasonable as most drone attacks take small amounts of time. For instance, [28] tracked all drone flights over The Hague over 8 months and

found the average duration to be 298 seconds and the max duration to be 720 seconds.

Artiϧcial Intelligence 349 (2025) 104425

11

D. Mutzari, T. Deb, C. Molinaro et al.

Narrowing down defender strategy space. As the attacker’s set of best response pure strategies is now small, the dominating set of
defense strategies is also expected to be small. Algorithm 5’s goal is to output a small subset of dominating defense strategies, as
explained below.9

Suppose the defender and attacker drones’ starting positions are 𝑣𝑑 , 𝑣𝑎, respectively, and 𝑆𝑎 is the (narrowed) set of possible
attack strategies starting from 𝑣𝑎 . For each strategy 𝑠𝑎 ∈ 𝑆𝑎, up to 𝑃 nodes are attacked, 𝑣1(𝑠𝑎),… , 𝑣𝑃 (𝑠𝑎), at times 𝑡1(𝑠𝑎),… , 𝑡𝑃 (𝑠𝑎).
To further reduce runtime, we may only consider targets with a significant (i.e. less than −𝛿) defender penalty.

Algorithm 4 catch
Given an attacker strategy, returns the first target the defender is able to protect in time and catch the attacker.

Require: An undirected graph (𝑣̂,𝐸|𝑣̂);
Attacker pure strategy 𝑠𝑎 ;
Defender start position 𝑣𝑑 ∈ 𝑣̂;

Ensure: 1 ≤ 𝑖 ≤ 𝑃 + 1, the index of the first target the defender is able to protect;

(𝑖 = 𝑃 + 1 indicates the defender is not in time to protect any target)

1: Define (𝑣1(𝑠𝑎),… , 𝑣𝑃 ′ (𝑠𝑎)) as the ordered list of targeted nodes in 𝑠𝑎;
2: Remove nodes with an absolute penalty less than 𝛿;

3: Re-index the remaining nodes, and update 𝑃 ′ ;

4: Define (𝑡1(𝑠𝑎),… , 𝑡𝑃 ′ (𝑠𝑎)) as the planned time steps for each node to be attacked;

5: for 𝑖 from 1 to 𝑃 ′ do
6: Find shortest path 𝜋𝑖 from 𝑣𝑑 to 𝑣𝑖(𝑠𝑎);
7: Denote its length by 𝑡𝑑

𝑖
;

8: if 𝑡𝑑
𝑖
≤ 𝑡𝑖(𝑠𝑎) then

9: return 𝑖;

10: end if

11: end for

12: return 𝑃 + 1;

Algorithm 5 ScanDefenseStrategies
Scans for a set of single-drone defense strategies within a given neighborhood, given a set of 𝑆𝑎 potential attacking strategies. Defense
strategies that are dominated on 𝑆𝑎 are filtered out.

Require: A weighted, undirected graph (𝑣̂,𝐸|𝑣̂ ,𝑅|𝑣̂);
attacker drone battery capacity and payload 𝐵,𝑃 ∈ ℕ;

attacker drone start position 𝑣𝑎 ;
defense drone start position 𝑣𝑑 ;

attacker drone possible strategies 𝑆𝑎 ⊂ 𝑎 .

Ensure: Defense drone possible strategies 𝑆𝑑 ⊂ 𝑑 .

1: if |𝑆𝑎| = 1 then
2: return catch(𝑣𝑑 ,𝑆𝑎); {Compute first strike feasible to prevent (and respective path).}

3: end if

4: init 𝑇 ;

5: for each 𝑣′
𝑑
∈𝑁(𝑣𝑑) ∪ {𝑣𝑑} and 𝑠′

𝑎
∈ 𝑆𝑎 do

6: 𝑇 [𝑣′
𝑑
, 𝑠′

𝑎
]← catch(𝑣′

𝑑
, 𝑠′

𝑎
);

7: end for

8: next_step ← prune(𝑇); {Omit dominated neighbors}

9: 𝑆𝑑 ← ∅;

10: for each 𝑣′
𝑑
∈ next_step do

11: init 𝑇𝑆 ;

12: for each 𝑣′
𝑎
∈𝑁(𝑣𝑎) ∪ {𝑣𝑎} do

13: {DFS visit}

14: update(𝑆𝑎); {Consider only strategies in 𝑆𝑎 that goes from 𝑣𝑎 to 𝑣′
𝑎
}

15: 𝑆̃𝑑 ← ScanDefenseStrategies(𝑣′
𝑑
, 𝑣′

𝑎
,𝐵 − 1);

16: 𝑇𝑆 [𝑣′𝑎]← 𝑆̃𝑑

17: end for

18: 𝑆𝑑 ← 𝑆𝑑 ∪ lift_strategies(𝑣′
𝑑
, 𝑇𝑆); {Combine strategies from recursion}

19: end for

20: return 𝑆𝑑 .

We can then compute for the defender, the minimal time to get to each such node (𝑡𝑑1 ,… , 𝑡𝑑
𝑃
), and let 1 ≤ 𝑖 ≤ 𝑃 be the first target

the defender can protect. This is the output of catch(𝑣𝑑, 𝑠𝑎) (Algorithm 4) which corresponds to the best strategy when the attacker’s
pure strategy is known.10

9 Narrowing down the defender strategy space is complex: as there are multiple possible attack strategies, the defender might want to cover many of them with a
single strategy, rather than considering the optimal strategy against every potential attack strategy.
10 Note that we only find the first node targeted by the attacker that is feasible to protect, not the first node we can catch the attacker at. This is because following

a longer path may cover other potential paths the attacker may take, without losing utility from not following the shortest path, when considering the given attacker
path.

Artiϧcial Intelligence 349 (2025) 104425

12

D. Mutzari, T. Deb, C. Molinaro et al.

Algorithm 6 SolveMetaGame
Computes a mixed allocation strategy of 𝐷 defensive drones into a set of neighborhoods.

Require: A set of neighborhoods 𝑉 ;

numbers of attacker and defender drones 𝐴,𝐷 ∈ℕ;

(Approximate) attacker and defender utility functions {𝑢𝑎
𝑣̂
(𝜆), 𝑢𝑑

𝑣̂
(𝜆)}𝑣̂∈𝑉 ;

Ensure: An SSE ⟨𝑝̂𝑑 , 𝑓𝑎⟩, where:

𝑝̂𝑑 ∈ 𝑉
𝐷

, a coverage vector of 𝐷 drones over the neighborhoods of 𝑉 ;

𝑓𝑎 maps each attacker drone to a neighborhood of 𝑉 ;

1: Compute piece-wise linear approximations of the attacker and defender utility functions 𝑢̃𝑎
𝑣̂
(𝜆), 𝑢̃𝑑

𝑣̂
(𝜆);

2: Initialize a MIP with the objective of maximizing ∑𝑣̂ 𝑥𝑎(𝑣̂) ⋅ 𝑢̃𝑑𝑣̂ (𝐱𝑑 (𝑣̂));
3: Add constraints on attacker and defender resources: ∑𝑣̂ 𝑥𝑎(𝑣̂) =𝐴,

∑
𝑣̂ 𝐱𝑑 (𝑣̂) =𝐷;

4: Require variables 𝑥𝑎(𝑣̂) ∈ {0,1} to be binary and limit continuous variables 0≤ 𝐱𝑑 (𝑣̂) ≤ 1;

5: Add a continuous variable 𝜃𝑎 for attacker threshold;

6: Add the following inequality constraints, forcing attacker’s best response:

7: for each neighborhood 𝑣̂∈ 𝑉 do
8: (i) 𝑢̃𝑎

𝑣̂
𝐱𝑑 (𝑣̂) ≥ 𝑥𝑎(𝑣̂) ⋅ 𝜃𝑎 ;

9: (ii) 𝑢̃𝑎
𝑣̂
𝐱𝑑 (𝑣̂) ≤ (1 − 𝑥𝑎(𝑣̂)) ⋅ 𝜃𝑎 + 𝑥𝑎(𝑣̂)𝑢̃𝑎𝑣̂(0);

10: end for

11: Linearize the above MIP (using [51]).

12: Let ⟨𝑝̂𝑑 , 𝑓𝑎⟩ be MILP solution.

13: return ⟨𝑝̂𝑑 , 𝑓𝑎⟩;

It should be observed that, at each time point in Algorithm 5, it suffices to decide the set of possible next steps for the defender.
We can then explore these using DFS, and eventually return all non-dominated pure strategies. The more steps the attacker takes
(recursion depth), the narrower its strategy space gets, so the search should converge relatively quickly.

The ScanDefenseStrategies algorithm has 3 steps:

1. For each possible next step 𝑣′
𝑑
∈ 𝑁(𝑣𝑑) ∪ {𝑣𝑑}, compute catch(𝑣𝑑 , 𝑠𝑎) for each 𝑠𝑎 ∈ 𝑆𝑎. Then prune any dominated strategy

(where for any strategy of the attacker, it catches the attacker later or at the same targeted node).

2. For each 𝑣′
𝑑

that survived, and for each possible next attacker step 𝑣′
𝑎
, recursively call ScanDefenseStrategies and retrieve the

set 𝑇𝑆 [𝑣′𝑎] of non-dominated pure strategies (with 𝐵 − 1, and updated 𝑆𝑎).

3. Lastly, lift pure strategies from (𝑣′
𝑑
, ⋅) to a strategy from (𝑣𝑑 , 𝑣𝑎) of the form: ``go to 𝑣′

𝑑
, and for each possible attacker next step

𝑣′
𝑎
, pick a pure strategy from 𝑇𝑆 [𝑣′𝑎]''.

The recursion ends either when 𝐵 = 0 or when the attacker strategy space is a singleton �- we then use catch. To save space, we
leverage dynamic programming, and start by solving the problem for 𝐵 = 0 and increment the battery capacity by 1 at every step,
solving each instance problem once. After this, we get a reduced matrix 𝑈𝜆 , which only considers a smaller subset of defense and
attack strategies.

In summary, S2D2 can approximate the utility of the attacker and the defender in each neighborhood, conditioned on the defender
presence probability 𝜆. Since drones stay within their neighborhoods, these utility functions (of 𝜆) can be used as an auxiliary input
to the task of allocating drones into neighborhoods. This is handled in the next section.

4.3. The meta game: multi-drone solution

As mentioned earlier, S2D2’s defense strategy respects a given coarsening that it computes. This means that it will assign a single
drone to each neighborhood and keep it there. In the previous section, we discussed how S2D2 approximates the defense utility from
protecting a neighborhood with a certain probability 𝜆. Equipped with these utility functions, S2D2 views the sequential SSG game
as a static SSG game, where each neighborhood is an independent target to be protected. However, unlike typical SSGs, the utility
function is nonlinear with the defense probability 𝜆, and is given as an auxiliary input.

Therefore, the third step in the S2D2 algorithm is to solve the Meta Game, once we know the optimal defender strategy for each
neighborhood. The MetaGame looks at the question of which neighborhoods to deploy a defense drone to. This is done via a mixed
strategy. The pseudo-code of the MetaGame is in Algorithm 6 and can be described at a high level as follows.

1. We translate the meta-game of allocating defense drones to neighborhoods into a multi-resource attacker defender SSG with
nonlinear utilities.

2. An approximation of utilities is given as an input. This is a piece-wise linear approximation derived from solving the single-drone
neighborhood game for different 𝜆 values.

3. Next, we translate the SSG problem into a MIP.

4. We then build on past work [51] to translate the MIP into a MILP. Their technique allows to replace piecewise linear functions
with a linear one by adding a linear number of continuous variables and a logarithmic number of binary variables.

5. Finally, we solve the above MILP and extract the attacker and defender solutions.

Next, we delve into the technical details of the high-level structure of the MetaGame algorithm described above.

Artiϧcial Intelligence 349 (2025) 104425

13

D. Mutzari, T. Deb, C. Molinaro et al.

Recall that we only consider strategies that respect 𝑉 , i.e., drones stay within their starting neighborhood, and there is up to
one attacker and one defender per neighborhood. Therefore, an attacker pure strategy naturally decomposes into an injection 𝑓𝑎 ∶
{1,… ,𝐴}↦ 𝑉 mapping each attacker drone to a neighborhood which it will attack, and for each drone 1 ≤ 𝑖 ≤ 𝐴, a pure strategy
𝑎
𝑖
= 𝑃 ,𝐵 ×

𝑓𝑎(𝑖)
𝐵

, where 𝑓𝑎(𝑖)
𝐵

considers only paths within the neighborhood 𝑓𝑎(𝑖).
Similarly, each defender strategy decomposes into a mapping of each defense drone to a neighborhood, and a strategy within

this neighborhood. Since all defense drones are identical, when considering mixed defense strategies, it suffices to specify (i) within
each neighborhood 𝑣̂ ∈ 𝑉 a mixed single-drone defense strategy 𝑥̂𝑑 (𝑣̂) ∈ Δ(𝑑

𝑣̂
); (ii) for each neighborhood the probability of it being

protected, as a coverage vector 𝑝̂𝑑 ∈ 𝑉
𝐷

, where 𝑉
𝐷
∶= {𝐱 ∈ [0,1]|𝑉 | ∶∑

𝑣̂∈𝑉 𝑥𝑣̂ ≤ 𝐷}. Therefore, the defender mixed strategy space
decomposes to Δ(𝑑) = 𝑉

𝐷
×
∏

𝑣̂∈𝑉 Δ(𝑑
𝑣̂
).

When solving the single-attacker single-defender instance for a neighborhood 𝑣̂, 𝑝̂𝑑 (𝑣̂) denotes the probability 𝜆𝑣̂ that ``a defender
is in the hood''. 𝑝̂𝑑 is a coverage vector, representing the probability of the presence of a defense drone in each neighborhood. Recall
that any vector with entries in [0,1] that sums up to ≤ 𝐷 is feasible to implement with some mixed strategy of assigning defense
drones to neighborhoods.

Given defender (resp. attacker) strategy (𝑝̂𝑑 , 𝑥̂𝑑) (resp. (𝑓𝑎, 𝑠̂𝑎)), where 𝑠̂𝑎(𝑓𝑎(𝑖)) = (𝑇 𝑖
𝑎
, 𝜋𝑖

𝑎
) ∈ 𝑃 ,𝐵 ×𝐵 , the expected utility is the

sum of expected utilities from each neighborhood 𝑓𝑎(𝑖) attacked, for 1 ≤ 𝑖 ≤ 𝐴. The expected utility from neighborhood 𝑣̂ is the
average of the sum of the rewards over the attacker drone set of chosen targets, and the utility when facing a single defender with
strategy 𝑥̂𝑑 (𝑣̂), weighted by 𝑝̂𝑑(𝑣̂). That is, for 𝑢 ∈ {𝑢𝑎, 𝑢𝑑}:

𝑢
(⟨𝑝̂𝑑 , 𝑥̂𝑑⟩, ⟨𝑓𝑎, 𝑠̂𝑎⟩) = ∑

1≤𝑖≤𝐴
𝑣̂𝑖=𝑓𝑎(𝑖)

[
𝑝̂𝑑 (𝑣̂𝑖) ⋅ 𝑢

(
𝑥̂𝑑 (𝑣̂𝑖), 𝑠̂𝑎(𝑣̂𝑖)

)
+
(
1 − 𝑝̂𝑑 (𝑣̂𝑖)

)
𝑢(⊥, 𝑠̂𝑎(𝑣̂𝑖))

]

Thus, as the probability a defender is ``in the hood'' 𝑝̂𝑑 (𝑣̂) decreases, the attacker drone is better off taking a greedy action. This
implies that it is not sufficient to compute SSE for single defender attacker game within each neighborhood to solve the overall
multi-drone game. Focusing on a neighborhood, we can extend the utility definition 𝑢(𝐱𝑑 , 𝑠𝑎, 𝜆) ∶= 𝜆𝑢(𝐱𝑑 , 𝑠𝑎) + (1 − 𝜆)𝑢(⊥, 𝑠𝑎), to
consider the probability 𝜆, denoting the probability a defender is in the hood. This may remind the reader of the SSG model with
penalties where, even when the attacker is caught, it gets a penalty 𝑃 > 0. We may effectively tune the parameters of the game so
that rewards are scaled by 𝜆, and the penalties are the rewards scaled by (1 − 𝜆). Section 4.2 discusses how to approximate SSE in a
single-attacker single-defender game with parameter 𝜆. We next focus on allocation to neighborhoods and assume an oracle returns
(an approximation of) optimal 𝑥̂∗

𝑑
, 𝑠̂∗
𝑎

strategies within each neighborhood given 𝑝̂𝑑 , 𝑓𝑎. This is possible as Section 4.2 shows how to
implement the oracle, and Lemma 3 below shows that an approximation suffices. Therefore we get for 𝑢 ∈ {𝑢𝑎, 𝑢𝑑}:

𝑢(𝑝̂𝑑 , 𝑓𝑎) = 𝑢
(⟨𝑝̂𝑑 , 𝑥̂∗𝑑⟩, ⟨𝑓𝑎, 𝑠̂∗𝑎⟩) =

𝐴 ∑
𝑖=1

𝑢
(
𝑥̂∗
𝑑
(𝑓𝑎(𝑖)), 𝑠̂∗𝑎(𝑖), 𝑝̂𝑑 (𝑓𝑎(𝑖))

)
.

We next pick a distribution 𝑝̂𝑑 which minimizes the utility above when 𝑓𝑎 is the best response to 𝑝̂𝑑 . Hence, we get a typical SSG,
with an attacker with multiple (𝐴) resources, with one important detail: the utility of each neighborhood 𝑣̂ is not necessarily linear
with the coverage 𝑝̂𝑑 (𝑣̂), although it is monotonic decreasing.

4.4. Generalization of multi-resource SSGs

In this section, we show how to generalize the work of [25] to handle a non-linear dependency of the attacker and utility functions
on 𝐱𝑑 , the defense probability on each target.

When both utilities are linear with 𝐱𝑎 and 𝐱𝑑 , there is a complete characterization of the Nash equilibrium of the game. Indeed,
best-responding simply means attacking (defending) the 𝐷 (𝐴) targets with the highest (marginal) utility for the defender (attacker).
Therefore:

Lemma 1. If 𝑢𝑎, 𝑢𝑑 are linear with 𝐱𝑑 and 𝐱𝑎, let 𝑣𝑑 (𝑡, 𝑥𝑎(𝑡)) = 𝑎𝑡(𝑅𝑑 (𝑡) − 𝑃 𝑑 (𝑡)) be the defender marginal utility from attacking target 𝑡.
Then (𝐱𝑑 ,𝐱𝑎) is a Nash equilibrium iff there exist thresholds 𝜃𝑎, 𝜃𝑑 such that:

• 𝐱𝑎 ∈ 𝖡𝖱(𝐱𝑑). Equivalently:

– 𝑢𝑎(𝑡,𝐱𝑑 (𝑡)) < 𝜃𝑎 ⇒ 𝑥𝑎(𝑡) = 0.

– 𝑢𝑎(𝑡,𝐱𝑑 (𝑡)) > 𝜃𝑎 ⇒ 𝑥𝑎(𝑡) = 1.

–
∑

𝑡 𝑥𝑎(𝑡) =𝐴.

• 𝐱𝑑 ∈ 𝖡𝖱(𝐱𝑎). Equivalently:

– 𝑣𝑑 (𝑡, 𝑥𝑎(𝑡)) < 𝜃𝑑 ⇒ 𝐱𝑑 (𝑡) = 0.

– 𝑣𝑑 (𝑡, 𝑥𝑎(𝑡)) > 𝜃𝑑 ⇒ 𝐱𝑑 (𝑡) = 1.

–
∑

𝑡 𝐱𝑑 (𝑡) =𝐷.

Artiϧcial Intelligence 349 (2025) 104425

14

D. Mutzari, T. Deb, C. Molinaro et al.

When 𝑢𝑑 is linear with 𝐱𝑑 , the defender’s marginal utility 𝜕𝑢
𝑑

𝜕𝐱𝑑
is a constant, and in particular, is independent of 𝐱𝑑 . Therefore,

the utility the defender gets from protecting target 𝑡 with probability ``budget'' 𝐱𝑑(𝑡) is 𝐱𝑑 (𝑡) ⋅ 𝑣𝑑 (𝑡, 𝑥𝑎(𝑡)). Therefore, best responding
means first covering the top 𝐷 targets, and when there are ties for the 𝐷th place, any randomization over the corresponding targets
will result in a valid best response.

However, when 𝜕𝑢
𝑑

𝜕𝐱𝑑
is a function of 𝐱𝑑 , this is not the case any longer. Indeed, the above condition would be necessary, suggesting

𝐱𝑑 to be a local maximum of 𝑢𝑑 , as otherwise (assuming 𝑢𝑑 is continuously differentiable) one could make small changes and increase
the defender’s utility. Nevertheless, it will not ensure a global maximum of 𝑢𝑑 , meaning a best response. If 𝑢𝑑 was concave with 𝐱𝑑 ,
any local maximum would also be global and therefore [25]’s algorithm would still work. Unfortunately, we cannot make such an
assumption in our game.

Nevertheless, we are not interested in computing a Nash equilibrium, but an SSE. Therefore, we first show that the criterion for
the attacker to best respond remains intact:

Lemma 2. Assume 𝑢𝑎 is linear with 𝐱𝑎, and that |𝑉 | >𝐴, and that 𝑃 𝑎(𝑡) <𝑅𝑎(𝑡) for every target 𝑡. Let 𝐱𝑑 be a defense mixed strategy. Then
𝐱𝑎 ∈ 𝖡𝖱𝑎(𝐱𝑑) iff there exists a threshold 𝜃𝑎 such that:

• 𝑢𝑎(𝑡,𝐱𝑑 (𝑡)) < 𝜃𝑎 ⇒ 𝑥𝑎(𝑡) = 0.

• 𝑢𝑎(𝑡,𝐱𝑑 (𝑡)) > 𝜃𝑎 ⇒ 𝑥𝑎(𝑡) = 1.

•
∑

𝑡 𝑥𝑎(𝑡) =𝐴.

Proof. (⇐) Suppose 𝐱𝑎 admits the above conditions. Then, the marginal attacker utility from attacking target 𝑡 is 𝑢𝑎(𝑡,𝐱𝑑 (𝑡)), there

fore, independent of 𝐱𝑎. Hence, best responding would first protect the targets with the highest attacker utility given 𝐱𝑑 , and any
randomization over the 𝐴th target will result with the same overall attacker utility. (⇒) Assume by way of contradiction that one of
the above conditions doesn’t hold. If there are two targets 𝑡1, 𝑡2 such that 𝑢𝑎(𝑡1,𝐱𝑑 (𝑡1)) < 𝑢𝑎(𝑡2,𝐱𝑑 (𝑡2)), and 0 < 𝑥𝑎(𝑡1), 𝑥𝑎(𝑡2) < 1, the
attacker’s utility will increase by shifting attacker probability mass from 𝑡1 to 𝑡2 until either 𝑥𝑎(𝑡1) gets to 0 or 𝑥𝑎(𝑡2) gets to 1. Last, if
not all of the attacker’s resources are utilized, we can increase the attack probability on all targets, and increase the attacker’s overall
utility as well. Note that this is why we need to assume |𝑉 | >𝐴 and 𝑃 𝑎(𝑡) <𝑅𝑎(𝑡) on every target 𝑡. □

Next, we opt to transform the SSE computation into a mixed integer program, which is a well-studied problem. We start from the
following optimization problem:

maximize:
∑
𝑡
𝑥𝑎(𝑡) ⋅ 𝑢𝑑 (𝑡,𝐱𝑑 (𝑡)) (3)

subject to:
∑
𝑡
𝑥𝑎(𝑡) =𝐴,

∑
𝑡
𝐱𝑑 (𝑡) =𝐷,

𝑥𝑎(𝑡) ∈ {0,1},0 ≤ 𝐱𝑑 (𝑡) ≤ 1,

𝑢𝑎(𝑡,𝐱𝑑 (𝑡)) ≥ 𝑥𝑎(𝑡) ⋅ 𝜃𝑎,

𝑢𝑎(𝑡,𝐱𝑑 (𝑡)) ≤ (1 − 𝑥𝑎(𝑡)) ⋅ 𝜃𝑎 + 𝑥𝑎(𝑡)𝑅𝑎(𝑡).

Evidently, a solution to the above MIP is SSE. Indeed, the objective is to maximize the defender’s utility, over all possible coverage
vectors 𝐱𝑑 of the defender. Demanding

∑
𝑡 𝐱𝑑 (𝑡) = 𝐷 is okay because the utilities are monotonically increasing. Finally, in the SSE

framework, we can assume that the attacker’s strategy is pure, that is, 𝑥𝑎(𝑡) ∈ {0,1} which enables us to write the condition for the
attacker to best respond (described in Lemma 2) with linear inequalities over the variables 𝐱𝑎(𝑡).

The only problem is that 𝑢𝑑 (𝑡,𝐱𝑑 (𝑡)) and 𝑢𝑎(𝑡,𝐱𝑑 (𝑡)) are non-linear w.r.t. 𝐱𝑑 (𝑡) in general. However, this can be handled using
standard techniques to approximate the utility functions with piece-wise linear approximations 𝑢̃𝑑 , 𝑢̃𝑎. This is inevitable as we don’t
have closed form formulas for the utilities �- rather, they are derived from the algorithm for the single attacker/single defender drone
problem in Step 2 of the S2D2 algorithm). We refer to [51] for an overview of the technique. In principle, we can add a logarithmic
number of integer variables, and a linear number of continuous variables, and replace the utilities with linear expressions using the
new variables.

We can bound the error from approximating the utilities by the following lemma:

Lemma 3. Let 𝐺 = (𝑉 ,𝐴,𝐷, 𝑢𝑎, 𝑢𝑑) be a (non-sequential) attacker SSG. Let 𝜀 > 0 and let 𝑢̃𝑎, 𝑢̃𝑑 be different attacker and defender utility
functions, such that ‖(𝑢𝑎, 𝑢𝑑) − (𝑢̃𝑎, 𝑢̃𝑑)‖∞ < 𝜀. That is, on every pair of strategies (𝐱𝑑 , 𝑠𝑎), the attacker and defender utility outputs differ by
up to 𝜀, using the other utility functions. Then if (𝐱𝑑, 𝑠𝑎) is an 𝜀-SSE of 𝐺, it is also a 2𝜀-approximate SSE of 𝐺̃ where the utilities are replaced
with 𝑢̃𝑎, 𝑢̃𝑑 .

Proof. Indeed, assume that for any pair of strategies, (𝐱𝑑 ,𝐱𝑎), we have that |𝑢𝑎(𝐱𝑑 ,𝐱𝑎)− 𝑢̃𝑎(𝐱𝑑 ,𝐱𝑎)| < 𝜀 and |𝑢𝑑 (𝐱𝑑 ,𝐱𝑎)− 𝑢̃𝑑 (𝐱𝑑 ,𝐱𝑎)| < 𝜀.

Let (𝐱𝑑 , 𝑠𝑎) be an 𝜀-SSE with respect to (𝑢𝑎, 𝑢𝑑). Then 𝑠𝑎 ∈ 𝖡𝖱𝑑
𝜀,𝑢𝑎,𝑢𝑑

(𝐱𝑑), and therefore, 𝑠𝑎 ∈ 𝖡𝖱𝑎2𝜀,𝑢̃𝑎 (𝐱𝑑). Thus:

𝑢̃𝑑 (𝐱𝑑 ,𝖡𝖱𝑑2𝜀,𝑢̃𝑎,𝑢̃𝑑 (𝐱𝑑)) ≥ 𝑢̃𝑑 (𝐱𝑑 , 𝑠𝑎).

Artiϧcial Intelligence 349 (2025) 104425

15

D. Mutzari, T. Deb, C. Molinaro et al.

Next, let 𝑠′
𝑎
∈ 𝖡𝖱𝑑

2𝜀,𝑢̃𝑎,𝑢̃𝑑
(𝐱𝑑). Then, the above inequality says 𝑢̃𝑑 (𝐱𝑑 , 𝑠′𝑎) ≥ 𝑢̃𝑑 (𝐱𝑑 , 𝑠𝑎). Analogously, let (𝐱̃𝑑 , 𝑠̃𝑎) be an 𝜀-SSE with

respect to (𝑢̃𝑎, 𝑢̃𝑑), and let 𝑠̃′
𝑎
∈ 𝖡𝖱𝑑

2𝜀,𝑢𝑎,𝑢𝑑
(𝐱̃𝑑). Then 𝑢𝑑 (𝐱̃𝑑 , 𝑠̃′𝑎) ≥ 𝑢𝑑 (𝐱̃𝑑 , 𝑠̃𝑎). Thus:

𝑢̃𝑑 (𝐱𝑑 , 𝑠′𝑎) − 𝑢̃𝑑 (𝐱̃𝑑 , 𝑠̃𝑎) ≥ 𝑢̃𝑑 (𝐱𝑑 , 𝑠𝑎) − 𝑢̃𝑑 (𝐱̃𝑑 , 𝑠̃𝑎) ≥

𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) − 𝑢𝑑 (𝐱̃𝑑 , 𝑠̃𝑎) − 2𝜀 ≥ 𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) − 𝑢𝑑 (𝐱̃𝑑 , 𝑠̃′𝑎) − 2𝜀 ≥ 0 − 2𝜀.

Finally, since 𝑠𝑎 ∈ 𝖡𝖱𝑑
𝜀,𝑢𝑎,𝑢𝑑

(𝐱𝑑), 𝑠𝑎 ∈ 𝖡𝖱𝑎2𝜀,𝑢̃𝑎 (𝐱𝑑), as desired. Therefore, (𝐱𝑑 , 𝑠𝑎) is a 2𝜀-approximate SSE with respect to (𝑢̃𝑎, 𝑢̃𝑑). □

Finally, we can use standard techniques, such as the one described in [52], to linearize the resulting MIP, and solve an MILP.

5. Theoretical analysis: SSE approximation

In this section, we prove that if Algorithm 2 outputs a 𝛿-coarsening, then it is an 𝜀(𝛿)-approximate SSE. Recall that 𝛿 is the
resolution parameter introduced in Section 4.1, controlling the granularity of the partitioning into neighborhoods.

First, a formal definition of a 𝛿-coarsening is provided in Definition 4. While this definition provides a precise framework, it
is somewhat restrictive, and the choice of constants may impose limitations. We stress that this definition is only needed for the
rigorous correctness proof of S2D2 (Theorem 1). Nevertheless, it is important to note that S2D2 yields good results in practice on real-world
large-scale cities, even if such a 𝛿-coarsening does not exist, as demonstrated via exhaustive experimentation described in Section 6.

Definition 4 (𝛿-Coarsening). Let 𝐺𝑣̂ = (𝑣̂,𝐸|𝑣̂) be some neighborhood. We denote by 𝑢𝑣̂,𝑑
𝐴,𝐷

(𝑢
𝑣̂,𝑎

𝐴,𝐷
), the (maximal) utility of a defender

(an attacker) at SSE in 𝐺𝑣̂ given 𝐴 attacker drones and 𝐷 defense drones. Let 𝛿 > 0. A 𝛿-coarsening 𝑉 is a coarsening that satisfies
the following conditions:

1. For each 𝑣̂ ∈ 𝑉 , 𝑣′ ∉ 𝑣̂, and 𝑣 ∈ 𝑣̂ with 𝑅𝑎(𝑣) > 𝛿, it is the case that 𝑑(𝑣, 𝑣′) > 𝐵, where 𝑑 is shortest path length.

2. (a) Number of neighborhoods |𝑉 | > 4max{𝐴,𝐷}.

(b) For each 𝑣̂, 𝑣̂′ ∈ 𝑉 : 43𝑢
𝑣̂,𝑎

1,0 > 𝑢
𝑣̂′ ,𝑎
1,0 − 𝛿𝑃 .

3. For each 𝑣̂ ∈ 𝑉 : 𝑢𝑣̂,𝑎
𝐴,0 < 𝑢

𝑣̂,𝑎

1,0 + 𝛿𝐴𝑃 .

4. For each 𝑣̂ ∈ 𝑉 : 3
64|𝑉 | 𝑢𝑣̂,𝑎1,0 > 𝑢

𝑣̂,𝑎

1,1 and 3
8|𝑉 | |𝑢𝑣̂,𝑑1,0 | > |𝑢𝑣̂,𝑑1,1 |+ 𝛿𝑃 .

Conditions 1-4 formalize conditions (i)-(iv) in Section 4.1 respectively. Condition 1 suggests that it takes a prohibitive amount of
time to move from any node outside a neighborhood into a valuable node within that neighborhood. 11 This condition incentivizes
drones to stay within their starting neighborhoods throughout the game. It is also a practical political reality �- city security officials
need to be seen to be distributing defensive assets in a fair way across the city rather than appearing to give ``preference'' to certain
places, even if they are high utility locations.

Condition 2a suggests that there are not enough defense/attack drones to protect/attack each neighborhood with probability
≥ 1∕4, as security resources are limited. If not, one may consider partitioning the neighborhoods further, though this may violate
Condition 1. This condition incentivizes the attacker to be more greedy, as neighborhoods with no defender with probability ≥ 3∕4
are sure to exist, and Condition 1 ensures defender drones will not reach an unprotected neighborhood in time. In turn, Condition 2b

says that since there are many neighborhoods, the attacker will not go to a low value neighborhood regardless of the defense strategy,
and therefore there is no reason for defending it either. As a result, we may ignore this neighborhood altogether, and simplify the
graph.12

As for Condition 3, note that 𝑢𝑣̂,𝑎
𝐴,0 ≤𝐴 ⋅ 𝑢𝑣̂,𝑎1,0 always holds. However, when there is variability in the rewards and valuable rewards

are sparse, we expect a smaller gap between the two, since one cannot exploit the same target twice. In particular, Condition 3 holds
if a single attacker can collect all rewards in 𝑣̂ with 𝑅𝑎(⋅) > 𝛿. This should be the case when valuable targets are sparse and lie in the
interior of neighborhoods rather than near the periphery. This condition incentivizes the attacker to spread her drones across different
neighborhoods to increase the chance of attacking an unprotected neighborhood, as by Condition 2a the chance of a neighborhood
being unprotected is not negligible. At the same time, it incentivizes the defender to spread her drones across different neighborhoods
to decrease the chance of a successful attack on an unprotected neighborhood. However, this argument holds only if neighborhoods
are comparably valuable, which is captured by the following condition.

Condition 4 suggests that the presence of a defense drone in a neighborhood makes a significant impact on defender and attacker
drone utility. The constraints ensure that the damage done by the attacker facing an undefended neighborhood is significantly larger
than the damage done when facing a single defender, where 𝑢𝑣̂,𝑑

𝐴,𝐷
is defined analogously to 𝑢𝑣̂,𝑎

𝐴,𝐷
(cf. Condition 3) for the defender.

The intuition is that a defender can always start at the center of a neighborhood, and thus be able to catch the attacker relatively

11 We don’t require 𝑅𝑎(𝑣′) > 𝛿 because the goal of defense drones is to catch the attacker before it causes more damage. Therefore, if there is a node 𝑣 ∈ 𝑣̂ with
𝑅𝑎(𝑣) = 0, that is close to valuable nodes of multiple different neighborhoods, placing a defense drone at 𝑣 could be a good strategy. After the attacker places her
drones, the defensive drone will decide which neighborhood to go to in order to catch the attacker.
12 For this reason, we do not require the coarsening 𝑉 to be a partition of 𝑉 (i.e., ⋃𝑖∈[1,𝑘] 𝑣̂𝑗 ≠ 𝑉).

Artiϧcial Intelligence 349 (2025) 104425

16

D. Mutzari, T. Deb, C. Molinaro et al.

quickly, whereas by Condition 3, the attacker has enough battery and payload to destroy all crucial spots of a neighborhood when
no defender is present.

Sufficiency. When a 𝛿-coarsening exists, we will show that an 𝜀-SSE can be computed efficiently. The reason is that both the attacker
and defender are incentivized to spread their drones out across different neighborhoods, which results in a decomposition of the
multi-drone game into multiple single-attacker single-defender drone sub-games. To show this, we start with a definition:

Definition 5 (𝜀-Tight coarsening of a graph). We say that 𝑉 is an 𝜀-tight coarsening if there exist 𝐱𝑑 ∈ Δ(𝑑

𝑉
) and 𝑠𝑎 ∈ 𝑎

𝑉
such that

(𝐱𝑑 , 𝑠𝑎) is 𝜀-approximate SSE.

We emphasize again that the S2D2 algorithm works even when a tight coarsening does not exist. The above definition is only
needed for the formal proof that yields theoretical results on the quality of the output strategy. Specifically, we prove a theoretical
bound on the loss of the defender and the attacker caused by restricting their strategies to respect a given coarsening 𝑉 , which is 𝜀
for an 𝜀-tight coarsening. Therefore, we will need to compute 𝜀(𝛿) for a 𝛿-coarsening.

Our restrictions on 𝛿-coarsening enable us to prove some nice properties, e.g. that a 𝛿-coarsening is always 𝜀-tight. To show this,
we first analyze the loss of the attacker from respecting a coarsening 𝑉 .

Lemma 4. Let 𝐱𝑑 ∈Δ(𝑑), 𝑠𝑎 ∈ 𝑎, 𝛿 > 0, and 𝑉 be a 𝛿-coarsening. Then, there exists a strategy 𝑠′
𝑎
∈ 𝑎

𝑉
such that 𝑢𝑎(𝐱𝑑 , 𝑠′𝑎) ≥ 𝑢𝑎(𝐱𝑑 , 𝑠𝑎)−

𝜀, and 𝑢𝑑(𝐱𝑑 , 𝑠′𝑎) ≥ 𝑢𝑑 (𝐱𝑑 , 𝑠𝑑), for 𝜀 = 2𝛿𝐴𝑃 .

Proof. Strategy 𝑠′
𝑎

is constructed in two steps. First, in 𝑠1
𝑎

each drone stays within its starting neighborhoods. Then, in 𝑠′
𝑎
∶= 𝑠2

𝑎
, in

addition, there is a single attacker drone in each neighborhood. The attacker’s loss is then bounded by the sum of the losses from the
two steps.

First, consider the following strategy 𝑠1
𝑎
. All attacker drones are placed as in 𝑠𝑎, and follow the same paths. Whenever an attacker

drone in 𝑠𝑎 crosses a neighborhood, the corresponding drone in 𝑠1
𝑎

halts. Note that since attacker drones are not coordinated after
initial allocation, 𝑠1

𝑎
is well defined. Specifically, the strategy of other attacker drones is not affected. By Condition 1, when an attacker

drone moves across neighborhoods, it can only get negligible rewards. Therefore, following 𝑠1
𝑎

may have a utility loss of up to 𝛿𝐴𝑃
for the attacker drone compared to 𝑠𝑎. Indeed, for every attack drone and attack payload unit, it could be that in 𝑠𝑎 it picked a reward
smaller than 𝛿, and in 𝑠1

𝑎
it doesn’t collect this reward.

Next, assume 𝐴′ > 1 attacker drones were assigned the same neighborhood 𝑣̂′ in 𝑠1
𝑎
. For each neighborhood 𝑣̂ ∈ 𝑉 , let 𝜆𝑣̂ be the

probability that at least one defense drone is allocated to neighborhood 𝑣̂ at time 𝑡 = 0, with respect to 𝐱𝑑 . Among all neighborhoods
that are not occupied with any attacker drone, let 𝑉𝐴′ be the 𝐴′ least protected neighborhoods with respect to 𝐱𝑑 . Then at 𝑡 = 0,
each neighborhood 𝑣̂𝑎′ ∈ 𝑉𝐴′ is protected with probability at most 𝜆𝑣̂𝑎′ ≤

𝐷|𝑉 |−𝐴 . Indeed, assume for purposes of contradiction that

they are protected with probability > 𝐷|𝑉 |−𝐴 . Then, since those are the least protected, all unoccupied neighborhoods are protected

with probability > 𝐷|𝑉 |−𝐴 , and there are at least |𝑉 |−𝐴 such neighborhoods. However, even protecting |𝑉 |−𝐴 neighborhoods with

probability 𝐷|𝑉 |−𝐷 already requires 𝐷 defense resources, hence such a defense coverage vector is not feasible 𝐱𝑑 ∉ 𝐷 , a contradiction.

Now, by Condition 2a, 𝐷|𝑉 |−𝐴 ≤
𝐷

3𝐷+𝐴−𝐴 = 1
3 . Consider spreading the attacker drones from 𝑣̂ to 𝑉𝐴′ , and play greedily, that is,

maximize the attacker utility when facing no defender. Denote this strategy by 𝑠2
𝑎
.

At worst, the utility of the attacker drones from 𝑉𝐴′ is 23
∑

𝑣̂𝑎′ ∈𝑉𝐴′
𝑢
𝑣̂𝑎′
1,0 −𝛿𝑃𝐴

′. Indeed, with probability ≥ 2
3 , there are no defenders

in 𝑣̂𝑎′ at 𝑡 = 0. Assume by way of contradiction that a defender catches an attacker drone in 𝑣̂𝑎′ at 𝑣𝑚, before it reaches some valuable
node 𝑣 ∈ 𝑣̂𝑎′ with reward 𝑅𝑎(𝑣) > 𝛿. Then, let 𝑣𝑎 be the start node for the attacker and 𝑣𝑑 be the start node for the defender. Since
they both begin at 𝑡 = 0 and meet at 𝑣, we know that 𝑑(𝑣𝑑 , 𝑣𝑚) = 𝑑(𝑣𝑎, 𝑣𝑚). By triangular inequality, 𝑑(𝑣𝑑 , 𝑣) ≤ 𝑑(𝑣𝑑 , 𝑣𝑚) + 𝑑(𝑣𝑚, 𝑣) =
𝑑(𝑣𝑎, 𝑣𝑚) + 𝑑(𝑣𝑚, 𝑣) ≤𝐵, as the attacker moves from 𝑣𝑎 to 𝑣𝑚 and then to 𝑣 in less than 𝐵 units of battery. However, 𝑑(𝑣𝑑 , 𝑣) ≤𝐵 and
𝑅𝑎(𝑣) > 𝛿 contradicts Condition 1. Therefore, the defenders can cause a utility loss for each attacker of up to 𝑃𝛿.

On the other hand, at best, the utility of the 𝐴′ drones in 𝑠1
𝑎

is 𝑢𝑣̂′
𝐴′ ,0. Therefore, the utility loss of the attacker is at most: 𝛿𝑃𝐴′ +

𝑢𝑣̂
′

𝐴′ ,0 −
2
3
∑

𝑣̂𝑎′ ∈𝑉𝐴′
𝑢
𝑣̂𝑎′
1,0 . By Condition 3, this is less than 2𝛿𝑃𝐴′ + 𝑢

𝑣̂′ ,𝑎
1,0 − 2

3 ⋅ 2min
𝑣̂𝑎′ ∈𝑉𝐴′

𝑢
𝑣̂𝑎′
1,0 . Then, by Condition 2b, the overall utility

loss is bounded by 2𝛿𝑃𝐴′. Repeating the above for all neighborhoods in 𝑠1
𝑎

that were initially assigned with multiple attacker drones
will result with a total attacker utility loss of up to 𝜀 = 2𝛿𝑃𝐴.

Thus, a greedy strategy 𝑠′
𝑎
= 𝑠2

𝑎
∈ 𝑎

𝑉
of spreading the attacker drones to unoccupied neighborhoods and playing greedily, ignoring

the defender, results in a negligible loss in utility, regardless of the defense strategy. □

It follows that the attacker respects the coarsening.

Corollary 1. Let 𝑉 be a 𝛿-coarsening. Then:

max
𝐱𝑑∈Δ(𝑑

𝑉
)
𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀 (𝐱𝑑)) ≥ max

𝐱𝑑∈Δ(𝑑

𝑉
)
𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑))

Artiϧcial Intelligence 349 (2025) 104425

17

D. Mutzari, T. Deb, C. Molinaro et al.

max
𝐱𝑑∈Δ(𝑑)

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑)) ≥ max
𝐱𝑑∈Δ(𝑑)

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑 (𝐱𝑑))

where 𝖡𝖱𝑑
𝜀,𝑉

(𝐱𝑑) ∶= arg max
𝑠𝑎∈𝖡𝖱𝜀(𝐱𝑑)∩𝑎

𝑉

𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) considers only strategies from 𝖡𝖱𝑎
𝜀
(𝐱𝑑) that respect the coarsening, and only then takes the

strategy that favors the defender.

Proof. Let 𝐱𝑑 ∈Δ(𝑑) be any strategy. Then by definition, 𝖡𝖱𝑎
𝜀,𝑉

(𝐱𝑑) = 𝖡𝖱𝑎
𝜀
(𝐱𝑑)∩𝑎

𝑉
⊆ 𝖡𝖱𝑎

𝜀
(𝐱𝑑). Therefore, 𝖡𝖱𝑑

𝜀
(𝐱𝑑) can only increase

defender utility:

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀 (𝐱𝑑)) = max
𝑠𝑎∈𝖡𝖱𝑎𝜀(𝐱𝑑)

𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) ≥

max
𝑠𝑎∈𝖡𝖱𝑎

𝜀,𝑉
(𝐱𝑑)

𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) = 𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑)).

Note that 𝖡𝖱𝑑
𝜀,𝑉

(𝐱𝑑) ≠ ∅ by Lemma 4. Since the inequality above holds for every 𝐱𝑑 ∈ 𝑑 , it also holds when maximizing over
𝐱𝑑 ∈Δ(𝑑

𝑉
). Conversely, let 𝑠𝑎 ∈ 𝖡𝖱𝑑 (𝐱𝑑). Then by Lemma 4, there exist 𝑠′

𝑎
∈ 𝖡𝖱𝑎

𝜀,𝑉
(𝐱𝑑) such that 𝑢𝑑 (𝐱𝑑 , 𝑠′𝑎) ≥ 𝑢𝑑 (𝐱𝑑 , 𝑠𝑎). Therefore:

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑)) = max
𝑠′𝑎∈𝖡𝖱𝑎

𝜀,𝑉
(𝐱𝑑)

𝑢𝑑 (𝐱𝑑 , 𝑠′𝑎) ≥

max
𝑠𝑎∈𝖡𝖱𝑎(𝐱𝑑)

𝑢𝑑 (𝐱𝑑 , 𝑠𝑎) = max
𝐱𝑑∈Δ(𝑑)

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑 (𝐱𝑑)).

Again, since the above holds for every 𝐱𝑑 , it also holds when maximizing over 𝐱𝑑 ∈Δ(𝑑). □

We now derive bounds on the utility loss (gain) of the attacker (defender) from increasing the protection of a neighborhood.

Lemma 5. Consider any neighborhood 𝑣̂, protected with some probability 𝜆. Then, increasing the probability a defender is in the hood 𝑣̂ by
𝜂 > 0, will result in the following lower bounds on the attacker utility loss and defender utility gain:

1. 𝑢𝜆,𝑎 − 𝑢𝜆+𝜂,𝑎 ≥ 𝜂 ⋅ 𝑢𝑎1,0 − 𝑢𝑎1,1.

2. 𝑢𝜆+𝜂,𝑑 − 𝑢𝜆,𝑑 ≥ −𝜂 ⋅ 𝑢𝑑1,0 + 𝑢𝑑1,1.

Recall that 𝑢𝑎
𝐴,𝐷

is the maximal attacker utility from attacking a neighborhood with 𝐴 attack drones, facing 𝐷 defense drones. Analogously,
𝑢𝑑
𝐴,𝐷

is the maximal defender utility when protecting a neighborhood against 𝐴 attack drones using 𝐷 defense drones.

Proof. The attacker utility is bounded as follows:

(1 − 𝜆)𝑢𝑎1,0 ≤ 𝑢𝜆,𝑎 ≤ (1 − 𝜆)𝑢𝑎1,0 + 𝜆𝑢𝑎1,1.

The defender utility is bounded as follows:

𝜆 ⋅ 𝑢𝑑1,1 + (1 − 𝜆)𝑢𝑑1,0 ≤ 𝑢𝜆,𝑑 ≤ (1 − 𝜆)𝑢𝑑1,0.

Subtracting the lower and upper bounds appropriately yields the above lower bounds. □

Theorem 1. A 𝛿-coarsening is 𝜀-tight, for 𝜀= 2𝛿𝐴𝑃 .

Proof. First, by Corollary 1, we know that:

max
𝐱𝑑∈Δ(𝑑

𝑉
)
𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀 (𝐱𝑑)) ≥ max

𝐱𝑑∈Δ(𝑑

𝑉
)
𝑢(𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑)).

Therefore, we will assume w.l.o.g. that the attacker respects the coarsening 𝑉 , and compare the RHS with:

max
𝐱𝑑∈Δ(𝑑)

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑)) ≥ max
𝐱𝑑∈Δ(𝑑)

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑 (𝐱𝑑))

where the last inequality is again by Corollary 1.

That is, it is enough to bound the loss of the defender from respecting the coarsening 𝑉 , when assuming that the attacker respects
the coarsening. Let 𝐱𝑑 ∈Δ𝑑 .

Similarly to the attacker, consider strategy 𝐱1
𝑑

where defense drones stop before crossing a neighborhood. Suppose that with
probability > 0, playing 𝐱𝑑 , defense drone 1 ≤ 𝑖𝐷 ≤𝐷 catches an attacker drone 1 ≤ 𝑖𝐴 ≤ 𝐴. Let 𝑣𝐷 be the start position of defense
drone 𝑖𝐷 , 𝑣𝑀 be the meeting point, at time 1 < 𝑡 ≤𝐵, and consider any path 𝜋𝐴 of length 𝐵− 𝑡 starting from 𝑣𝑀 within the attacker’s

Artiϧcial Intelligence 349 (2025) 104425

18

D. Mutzari, T. Deb, C. Molinaro et al.

starting neighborhood, ending at some node 𝑣𝐴 , for attacker drone 𝑖𝐴. Then the path from 𝑣𝐷 to 𝑣𝐴 is of length 𝐵, and therefore,
by Condition 1, all of the nodes along 𝜋𝐴 yield a reward ≤ 𝛿. Hence, playing 𝐱1

𝑑
results in an attacker utility gain of up to 𝛿𝐴𝑃 .

Therefore, to this end, drones stay within their neighborhoods. Again, we stress that 𝐱1
𝑑

is only defined in case the defense drones’
movement is not coordinated after initial allocation.

Next, we claim that the defender should not allocate two defense drones to the same neighborhood. Let 𝑝 < 1 be the probability
that each neighborhood is protected with a single drone, in 𝐱1

𝑑
. We can consider a strategy 𝐱2

𝑑
that coincides with 𝐱1

𝑑
when the

coarsening is respected (which happens with probability 𝑝), and then the utility loss will be bounded by a factor of 1 − 𝑝 < 1. Thus,
w.l.o.g., assume 𝑝 = 0.

Denote by 𝐜 ∈ 𝐷−1 the coverage of the neighborhoods, with respect to 𝐱1
𝑑
. That is, 𝑐𝑣̂ is the probability that neighborhood 𝑣̂ is

protected with at least a single defender. Denote by 𝖡𝖱𝑑 the set of 𝐴 targets the attacker is attacking when facing 𝐱1
𝑑

(this is well
defined since we may now safely assume the attacker respects the coarsening).

Next, we want to introduce a strategy 𝐱2
𝑑

that respects the coarsening and has comparable defender utility. Denote by 𝐜′ ∈ 𝐷 the
coverage vector for 𝐱2

𝑑
. We are interested in increasing the coverage of 𝖡𝖱𝑑 , while maintaining the condition that these targets are

in 𝖡𝖱𝑑 . We have an extra defense unit to allocate, since in 𝐱2
𝑑
, only 𝐷 − 1 neighborhoods are covered in each pure strategy.

Let 0 < 𝑟 < 1. By Lemma 5, using 5𝑟 defense resources on each target outside of 𝖡𝖱𝑑 , we can decrease the attacker’s utility by
at-least 5𝑟 ⋅ 𝑢𝑣̂,𝑎1,0 − 𝑢𝑣̂1,1.

We will do the same for targets in 𝖡𝖱𝑑 , increasing their coverage by 3𝑟. By Lemma 5, the attacker’s utility will decrease by at
most 3𝑟 ⋅ 𝑢𝑣̂,𝑎1,0 + 𝑢𝑣̂1,1. By Condition 2b, the set 𝖡𝖱𝑑 remains the attacker’s best response, if 𝑟𝑢𝑣̂1,0 > 2max

𝑣̂∈𝑉 𝑢
𝑣̂,𝑎

1,1. Meanwhile, again by

Lemma 5, the defender’s utility on every 𝑣̂ ∈ 𝖡𝖱
𝑑

increases by at least −3𝑟 ⋅ 𝑢𝑣̂,𝑑1,0 + 𝑢
𝑣̂,𝑑

1,1 .

We therefore take 𝑟 = 1
8|𝑉 | , and require the following:

1.
1

8|𝑉 | 34 max
𝑣̂∈𝑉 𝑢

𝑣̂,𝑎

1,0 > 2max
𝑣̂∈𝑉 𝑢

𝑣̂,𝑎

1,1.

2.
3

8|𝑉 | |𝑢𝑣̂,𝑑1,0 | > |𝑢𝑣̂,𝑑1,1 |+ 𝛿𝑃 .

The first condition ensures that the attacker’s best response set is maintained, and the second condition ensures the defender utility is
decreased by up to 𝛿𝐴𝑃 in total. Both of these hold by Condition 4, which states that (and quantifies how) the presence of a defense
drone in a neighborhood significantly affects the attacker and defender utilities.

Therefore, strategy 𝐱2
𝑑

results with up to an additional 𝛿𝐴𝑃 utility loss for the defender. This completes the proof, as:

max
𝐱𝑑∈Δ(𝑑

𝑉
)
𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀 (𝐱𝑑)) ≥ max

𝐱𝑑∈Δ(𝑑

𝑉
)
𝑢(𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑)) ≥

max
𝐱𝑑∈Δ(𝑑)

𝑢𝑑 (𝐱𝑑 ,𝖡𝖱𝑑𝜀,𝑉 (𝐱𝑑)) − 𝜀 ≥ max
𝐱𝑑∈Δ(𝑑)

𝑢(𝐱𝑑 ,𝖡𝖱𝑑 (𝐱𝑑)) − 𝜀 □

We now explain how to bound the error of S2D2 algorithm, assuming a 𝛿-coarsening exists.

Theorem 2. Let 𝛿 > 0 and assume 𝑉 is a 𝛿-coarsening. Then S2D2 outputs an 𝜀-SSE for 𝜀 = 2𝐴𝑃𝛿 + 2𝜀′, where 𝜀′ is an upper bound on
the error of the single-attacker single-defender oracle.

Recall that our proposed S2D2 algorithm consists of 3 steps. In the coarsening step, the algorithm outputs, along with the coarsening
𝑉 , a parameter 𝛿. By Theorem 1, the optimal strategy that respects the coarsening is an 𝜀1-SSE, for 𝜀1 = 2𝐴𝑃𝛿.

In the second step, we solve the single-attacker single-defender game on each neighborhood. We can bound the utility of the
attacker by (1 − 𝜆)𝑢𝑣̂,𝑎1,0 ≤ 𝑢

𝑣̂,𝑎

𝜆
≤ 𝑢

𝑣̂,𝑎

1,0. The lower bound is reached by setting the attacker strategy as 𝑠𝑎 ∈ arg max𝑠′𝑎 𝑢
𝑣̂(⊥, 𝑠′

𝑎
) a greedy

strategy, regardless of the defense strategy. The upper bound is reached by setting the defense strategy to be ⊥. Similarly, the utility
of the defender can be bounded by

𝑢
𝑣̂,𝑑

1,0 ≤ 𝑢
𝑣̂,𝑑

𝜆
≤ (1 − 𝜆) ⋅ 𝑢𝑣̂,𝑑1,0 .

Indeed, the lower bound is when 𝐱𝑑 = ⊥, and the upper bound is reached if we assume that a defender in the neighborhood protects
all targets completely (and 𝜆 is small, so that a greedy strategy is approximately 𝖡𝖱).

As a consequence, the error of the utility estimation from step 2 can be bounded by 𝜀2 = 𝜆max𝑃 max𝑣∈𝑉 𝑅𝑎(𝑣).
In the third step, the algorithm solves the multi-drone meta-game, using the approximated utility function from step 2 as an

input. By Lemma 3, given the error for the second step, the third step outputs a 2𝜀2-SSE. The final solution is thus ensured to be an
(𝜀1 + 𝜀3)-SSE. Nevertheless, to make sure the error is small, the error 𝛿2 must be small as well.

Whenever 𝜆𝑣̂ > 𝜆𝑐 for some cutoff 𝜆𝑐 , in order to get a meaningful bound for the error, we must approximate the utility more
accurately. As suggested in Section 4.2, we should consider all strategies 𝑠𝑎 for the attacker in 𝑣̂, such that 𝑢𝑣̂(⊥, 𝑠𝑎) ≥ (1 − 𝜆𝑣̂)𝑢

𝑣̂,𝑎

1,0,
which may consist of more than all greedy strategies. In particular, let 𝑟1 ≥ 𝑟2 ≥… ≥ 𝑟𝑃 > 𝛿 be the top 𝑃 rewarding nodes. Then

Artiϧcial Intelligence 349 (2025) 104425

19

D. Mutzari, T. Deb, C. Molinaro et al.

Table 2
Median utilities assigned to various types of facilities by se

curity experts.

Facility Median
Utility

National Government Leadership Buildings 5
Security Installation Buildings 5
Electricity/Natural Gas Plants 5
National Government Operational Buildings 4
Hospitals 4
Sanitation and Water Plants 4
Industrial and Hazardous Materials Areas 4
Transportation Hubs 4
High Density Areas 4
Local/Municipality Buildings 3
Tourist Sites 3
Financial Districts 3
Shopping and Entertainment Areas 3
Sports Arenas 3

the attacker strategy space consists of all paths that pass through enough of these nodes so that the overall utility when there is no
defender is more than (1 − 𝜆𝑣̂)𝑢

𝑣̂,𝑎

1,0. Doing so will result with an exact solution, and will allow us to replace 𝜆max with 𝜆𝑐 , as desired.

6. Experiments

Our experiments were aimed at assessing the efficacy of S2D2 by comparing runtime and defender utilities with a baseline. We
first synthetically generated utilities for nodes in 80 world cities from all continents (except Africa and Antarctica), including several
capitals. Then, we used manual annotations for different facilities through a survey of 7 security and defense experts. Finally, we did
a detailed case study that qualitatively assessed the defenses recommended for a single city.

All the experiments were run on an Intel(R) Core(TM) i9-10980XE CPU with 256 GB RAM.

Implementation of S2D2, baseline defense strategy, and the code for the experiments presented below, are all publicly available
on Github https://github.com/tonmoay/S2D2-Experiments.

6.1. Setting

Dataset and parameters. We created a dataset of 80 cities, ranging from a few thousands nodes up to a few hundreds of thousands of
nodes. For each city, the street networks were sourced from the OpenStreetMap platform via the OSMnx library [53].

The number of neighborhoods was fixed to |𝑉 | = 8𝐷, that is, proportional to the number of defense drones. Taking a large constant
will result in a graph that is mostly unprotected, and neighborhoods that are too small. Taking a small constant would mean that
there are enough defense drones to cover all neighborhoods with probability 1, yet those neighborhoods will be too big to protect.

As the dataset lacked rewards/penalties for nodes, we assigned those parameters in two ways: (i) sampling them independently
from a distribution (log-normal/Zipf); (ii) using security experts to manually annotate 6 cities. Defender penalties were then assigned
by randomly perturbing the rewards. This maintains some degree of correlation while circumventing a zero-sum game scenario.

For the synthetic data, we assigned rewards to city nodes by sampling independently from a distribution over the [0,∞) interval.
The reason is that (i) rewards should be non-negative and (ii) we expect the set of nodes with high rewards to be sparse. Otherwise,
the game essentially becomes an evasion game where the goal is to catch the attacker as soon as possible. Specifically, we sampled
from the log-normal distribution with 𝜇 = 0, 𝜎 = 4, as well as a Zipf distribution with 𝑠 = 2.

For the manually annotated data, we asked 7 senior defense and security officials from the US, EU, Asia, and the Middle East to
rate the importance of different facilities in city neighborhoods. The 6 cities included three major U.S. cities, an Asian megacity with
a population of over 20M people, and two smaller cities in the Middle East. In all, the cities included 3 world capitals. We asked
the experts to imagine a city that they knew well when filling out the survey without telling them which city to look at. We asked
questions related to the following types of facilities: Local/Municipality Buildings (e.g., the office of the mayor or city administration),
National Government Leadership Buildings (e.g., the White House in Washington DC or 10 Downing Street in London), National
Government Operational Buildings (e.g., the office of a Ministry), Security Installation Buildings (e.g., Ministry of Defense or Europol
Headquarters), Hospitals, Electricity/Natural Gas Plants, Sanitation and Water Plants, Industrial and Hazardous Materials Areas,
Transportation Hubs (e.g., airports, train stations, etc.), Tourist Sites, Financial Districts, Shopping and Entertainment Areas, Sports
Arenas, and High Density Areas. Each type of facility was to be ranked on a 1 to 5 scale with 1 meaning it was of very low importance
and 5 meaning it was of critical importance. The median values obtained are summarized in Table 2. All the experts agreed that
security installations and major national government buildings would have top priority followed by utilities (e.g., power, water).
The vast majority of the cities (e.g., residential areas) would have much lower rewards. A specifically designed annotation interface
(Fig. 4) was used by the experts to draw rectangles and/or polygons and provide a utility value for each polygon, i.e., value of the
region. To avoid risks to real cities, the figure has been intentionally blurred to show the overall use of the interface without making
it possible to identify the specific city.

Artiϧcial Intelligence 349 (2025) 104425

20

https://github.com/tonmoay/S2D2-Experiments

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 4. Annotation interface (intentionally blurred).

We fixed the number of defender and attacker drones to be 𝐷 =𝐴 = 4, the battery capacity 𝐵 = 6 and the payload 𝑃 = 4. However,
in some experiments, we also varied 𝐴,𝐷,𝐵, and 𝑃 . The outcomes presented pertain to 100 iterations in all reported results.

Baseline. We compared S2D2’s runtime and expected utility with a greedy baseline (Algorithm 7) that employs a drone-swarm
defense mechanism. The baseline allocates protection to each neighborhood with a drone, doing so proportionally to the cumulative

Algorithm 7 Greedy Baseline
A heuristic defense strategy that assigns defense drones to neighborhoods based on their average attacker rewards. Each assigned
drone starts at a random node, and then chases the closest attacker drone.

Require: Undirected graph 𝐺 = (𝑉 ,𝐸);
coarsening 𝑉 of 𝐺, and 𝛿;

numbers of attacker and defender drones 𝐴,𝐷 ∈ℕ;

attacker drone’s payload 𝑃 ∈ℕ;

drone’s battery capacity 𝐵 ∈ℕ;

attacker rewards 𝑅𝑎 ∈ℕ|𝑉 | ;
defender penalties 𝑃 𝑑 ∈ℤ|𝑉 |

<0 .

Ensure: Defense mixed strategy (𝑝̂𝑑 , 𝐱̂𝑑) ∈ Δ(𝑑

𝑉
).

1: weights_d ← [];

2: for each 𝑣̂∈ 𝑉 do
3: 𝑣̂𝑎 ← 𝑣̂.get_top_attack_rewards(𝑃 , 𝑅𝑎 , 𝑃 𝑑); {Breaks ties in favor of defender}

4: weights_d[𝑣̂] ← 𝑣̂𝐴 .sum_abs_penalties(𝑃 𝑑);

5: end for

6: 𝑝̂𝑑 ← D * weights_d / weights_d.sum();
7: for each 𝑣̂∈ 𝑓𝑎 do
8: 𝑠𝑑1 ← goto_random_node(𝑣̂);

9: for each 2 ≤ 𝑡 ≤ 𝐵 do
10: 𝑠𝑑

𝑡
← move_towards_closest_node(𝑣̂, 𝛿);

11: end for

12: 𝑥̂𝑑 [𝑣̂]← (𝑠𝑑1 ,… , 𝑠𝑑
𝑡
); {a pure strategy}

13: end for

14: return (𝑝̂𝑑 𝑥̂𝑑);

absolute penalties of the top 𝑃 attacker-rewarding nodes. This is done by letting each defense drone sample its starting neighborhood
independently from the distribution 𝑝̂𝑑 (Line 6).

Within each neighborhood, the baseline drone starts at a random node. The output of move_towards_closest_node(𝑣̂) is a function
that assigns a random start node from 𝑣̂ in each execution. It then follows a greedy next-step function, defined for each time step
1 ≤ 𝑡 ≤𝐵 as follows. The defender looks for the target 𝑣 ∈ 𝑉 that is closest to the attacker drone position, is of interest to the attacker
(amongst the top 𝑃), is valuable to the defender (penalty < −𝛿), and the defender can reach there before the attacker, and moves one
step along the shortest respective path. If there are multiple attackers in sight (in 𝑣̂), it picks the closest one to hunt down, breaking
ties randomly. Importantly, the algorithm returns a strategy, so the output of move_towards_closest_node is actually a function,
that determines the next step for the defender given the defense current position, attacker last observed position, updated penalties
and rewards, and the neighborhood graph structure. This procedure is reiterated based on the attacker’s updated position. The above
baseline is an adaptation of [33] to our setting. As in [33], each defender is paired with the closest observed attacker drone. In
addition, chasing a drone is done by predicting its projectile. While [33] assumes a straight-line projectile, our heuristic takes into
account the attacker rewards, and also rather than straight-line the defender takes the shortest path along the graph.

Notably, the defense strategy above can be implemented by using a defense drone swarm. As the experiments will demonstrate,
such a defense strategy is more scalable in terms of run-time, but the expected defender utility is going to be smaller.

Artiϧcial Intelligence 349 (2025) 104425

21

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 5. Comparison of S2D2 with the baseline.

Fig. 6. Comparison of S2D2 with the baseline, with ADR ∈ {0.5,1,2}.

Attacker. Both S2D2 and baseline defenders were paired with the S2D2 attacker, as we are interested in handling a strong attacker
approximating the best response.

6.2. Results

Fig. 5 reports the results regarding runtime and defender utility (expressed as ratios between the baseline and S2D2).
Fig. 5(a) shows that the runtime ratio between S2D2 and the baseline approaches a constant factor of about 15. Indeed, for small

cities S2D2 runtime is dominated by the multi-drone stage, but this cost becomes negligible as neighborhood size grows. Accordingly,
S2D2 can be run within times that are reasonable even for the largest cities (3.5 hours with one CPU for the largest one). The more
expensive runtime is amply rewarded by the fact that S2D2 decreases the expected defender loss and the attacker’s expected utility
by an average of 2.84 times that of the baseline, as shown in Fig. 5(b). Interestingly, the utility is less dependent on graph size and
more on the structure of the graph and distribution of rewards.

As for manually annotated cities, Fig. 5(c) shows that the baseline is better for one city. This could be due to the piece-wise linear
approximation of single-drone neighborhood utility function, where we only used #𝜆 = 3 points 𝜆𝑖 ∈ {0,0.5,1} (which performed good
enough for the synthetic data). We therefore repeated the experiment with S2D2 using #𝜆 = 10 points. Indeed, S2D2 convincingly
outperforms the baseline in all manually annotated cities.

Fig. 6 reports results regarding the dependency of runtime and defender utility on the ratio between the number of attacker to
defender drones (synthetic utilities, log-normal distribution). The number of attacker drones is 𝐴 = ⌊𝐷 × ADR⌋ where ADR is the

Artiϧcial Intelligence 349 (2025) 104425

22

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 7. Defender utility ratios when the defender’s estimate of the attacker’s utility is off by 0 (a) or by ±10% (b).

Fig. 8. Defender utilities with 5 attacker drones.

attacker-defender ratio. S2D2 yields a higher defender utility at the expense of increased run-time compared to the baseline. The
runtime ratio is relatively large since the cities are relatively small (up to 45,000 nodes), and so the multi-drone phase of the solution
takes a significant portion of time. However, we do not observe a strong correlation between ADR and runtime, so handling more
attackers does not incur a higher computational cost. We also do not observe a correlation between ADR and defender utility ratio.
This is probably because both the baseline and the S2D2 defender utilities are similarly affected by the change of ADR.

Fig. 7 shows how defender utility varied when we perturbed manually annotated utilities. The latter were perturbed by ±10%, i.e.
they were fixed to ±10% of the true value. In the case of one city, the defender utility ratio is less than 1, so the baseline outperforms
S2D2. This is explained by the coarse approximation of the single-drone utility function as a piece-wise linear function, which can
be improved if necessary at the expense of runtime. In all the other 5 cases, the utility ratio ranges from around 1.05 to 2.15. In two
cases, S2D2 yields almost double the utility of the baseline, and in 3 other cases, it outperforms the baseline by a smaller margin.
It should be noted that, if we average the defender’s utility ratio across the 6 cities, the average is 1.34. Thus, on average, S2D2
provides 34% improvement over the baseline algorithm in terms of the utility to the defender. Even though that comes at the cost of
an increased runtime, most cities would be happy to make this tradeoff: saving 34% more of the utility of the city (lives and property
damage).

Fig. 7(b) shows that in every single case, the defender utility ratio is over 1, so the S2D2 algorithm outperforms the baseline. Even
when the defender’s assumption about the attacker’s utility is slightly incorrect, the average improvement over the baseline is 41%.
Most cities would prefer to save an additional 41% of the utility of the city compared to saving some runtime.

Finally, Fig. 8 reports the results we obtained when we fixed 𝐴 = 5 attacker drones and selected 5 cities based on a balanced size
distribution, from 2,283 nodes to 125,013 nodes (synthetic utilities, Zipf distribution). Battery capacity and payloads were fixed to
𝐵 = 6 and 𝑃 = 4.

Fig. 8(a) reports the impact on defender utility of varying the number of defender drones from 2 to 10 against 5 attacker drones.

As expected, increasing the number of defenders consistently enhances defender utility. Fig. 8(b) shows the impact of perturbing
utilities from 0% to 100% in 1% increments, with penalties unchanged, when we fixed 𝐷 = 5 defender drones. We sampled a defender
strategy from the mixed strategy set, perturbed the rewards, and then evaluated the attacker’s response and the utilities of both sides
across all perturbation levels. The results show that, despite the perturbations, the defender strategy remains effective, demonstrating
robustness against the attacker’s adaptations. Although some noise was observed, the overall utility trends were stable.

Case study of one major city. We now describe a detailed case study of one major city from the Americas with a population of over 2M.
The city had 28,671 nodes and was manually annotated. Unless stated otherwise, the experimental parameters described previously
were used in this case study.

Artiϧcial Intelligence 349 (2025) 104425

23

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 9. Results of a case study for one major city.

Fig. 9 shows the runtimes and utility ratios we obtained when varying the number of defender drones, the payload, and the
battery capacity. Not surprisingly, our very simple baseline is significantly faster than the S2D2 algorithm. Nevertheless, Fig. 9(a)
shows that S2D2 takes a reasonable amount of runtime (about 3--4 minutes) when the number of defensive drones is varied from
4 to 12 �- moreover, the time seems more or less constant. When the payload is varied (see Fig. 9(b)), we see that S2D2’s runtime
increases linearly �- but still stays in a matter of minutes (13 minutes when the payload is 7). When the battery capacity is varied
(see Fig. 9(c)), S2D2’s runtime increases exponentially �- when battery capacity is 7 or less, it takes about 16-17 minutes, but once
it goes up to 8, the runtime increases significantly to about 66 minutes. This is not surprising because the number of possible paths
grows exponentially with the battery capacity �- as battery capacity increases, the attacker can travel further.

Fig. 9(d) shows that when the number of defensive drones is varied from 4 to 12, S2D2 delivers 2 to 4 times the utility provided
by the baseline. However, there is no consistent increase in this ratio. While both S2D2 and baseline defender utilities are expected
to increase when the number of defenders goes up, we do not see a reason for the ratio to increase nor decrease. Fig. 9(e) shows
that when the payload is varied from 3 to 7, S2D2 delivers 1.7 to 2.7 times the utility provided by the baseline. Again, there is some
fluctuation in the ratio. Finally, Fig. 9(f) shows that when the battery capacity of the drones is varied from 4 to 8, S2D2 delivers 1.7
to 4 times the utility provided by the baseline. All of these numbers suggest that S2D2 is a definitive improvement over the baseline
as far as defender utility is concerned �- this comes at the cost of runtime, even though the latter is still reasonable.

Fig. 10 shows what percentage of the nodes were destroyed for each of the 5 utility values, with 𝐵 = 6, 𝑃 = 4, ADR = 1, and
𝐷 = 4. Specifically, Fig. 10(a) looks at what happens when varying battery capacity. We observe that as battery capacity increases,

Artiϧcial Intelligence 349 (2025) 104425

24

D. Mutzari, T. Deb, C. Molinaro et al.

Fig. 10. Percentage of destroyed nodes for each utility value.

the percentage of destroyed nodes having utility 5 nodes increases �- this is probably because the attacker has enough battery to
attack multiple 5-ranked nodes with a single drone. Fig. 10(b) shows what happens when we vary the drones’ payload. Again, we
see that as payload increases, the percentage of destroyed nodes with utility 5 increases �- as the attacker has more payload, it may
prefer to attack more of those nodes. The saturation at payload of 5 is probably because there are no more 5-ranked nodes that a
single drone can reach with its battery capacity. Fig. 10(c) shows the situation when we vary the number of defender drones. As
expected, we see that as the number increases, the percentage of nodes with utility 5 being destroyed decreases. This demonstrates
that S2D2 utilizes each added defender drone to cover more of the high ranked nodes. We see a similar correlation for utility 4 nodes,
but it is weaker. This can be explained as a side effect where the attacker, taking into consideration that the utility 5 nodes are more
protected, now prefers to strike against utility 4 nodes where it is less likely to get caught.

7. Discussion

Coarsening. The first step of S2D2 is to coarsen the input graph. Specifically, the neighborhoods should be densely connected inside
and relatively isolated from one another. However, in urban environments, target locations may not exhibit this kind of clean structure.
First, we emphasize that the output coarsening is not restricted to respect jurisdictional divisions or any type of man-made partition
of the city. Second, our intuition was that important areas of interest typically come in clusters, e.g., a dense neighborhood, an
industrial area, or a group of government buildings, and so, we expect a good coarsening to exist. For instance, Wall Street in New
York City is densely clustered. Likewise, the major government buildings in Washington DC are also densely clustered. We then tested
our intuition via two approaches. First, we analyzed real-world large-scale cities, annotated according to the knowledge of security
experts. Second, we synthetically annotated nodes with respect to two distributions. In both cases, we observed that the output
coarsening was not always ideal. Nevertheless, it did effectively separate the city into neighborhoods and in most of the cities, our
experimental results where reasonable even when the coarsening was not ideal. From both theoretical and experimental perspectives,
we identify the coarsening approach to be promising, and believe that improvements in coarsening have the potential to significantly
improve defense strategies.

Graph structure. Aerial drones need not be subject to any ground-based constraints of the underlying city, and can seamlessly reach
any location through direct aerial traversal. However, we note that this does not suggest that all targets are fully connected. Cities
can be quite large, and it takes time to go from one point to another. Also, the defender is also using drones and is therefore moving at
a comparable speed as the attacker.13 We also emphasize that our choice of modeling a city as a general graph, enables applicability
beyond drone swarm defense. Land-based vehicles are more subject to the topographical structure of the city, and so our approach can
be even more effective in this setting. Also, not using a perfect grid allows our model to capture various obstacles, e.g., a skyscraper
cluster, or an area that is protected with GPS jamming devices.

Attacker adaptivity. While our model allows the defender to apply an adaptive strategy that changes as a function of the state, the
attacker is modeled to be static. This simplification seems to contrast with some pursuit-evasion games of a similar type, where both
players are adaptive. In real-world scenarios, attackers are likely to observe the state, at least partially, and adapt their strategies
in accordance. This may raise concerns about whether the model’s validity is compromised by this simplification. To this end, we
emphasize that while acquiring aerial drones is relatively easy, tracking drones is still imperfect, and as we cover in the related work,
is an independent area of interest. For instance, [28] analyzes 8 months of drone flights over The Hague, but it is clear that some drone
flights may have been missed due to imperfections in tracking. Therefore, we assume that both the attacker and the defender are
not aware of the locations of the opposing drones at the beginning. The asymmetry stems from the assumption that after significant
damage is caused by an attacker drone, it can be tracked. We believe this assumption to be more realistic compared to prior works,
at least in the context of drones that can be small, silent, fast, and may not communicate.

13 We believe that in cases when the drones move so fast that the targets are fully connected, the problem should be modeled as a non-sequential SSG where the
attacker has 𝐴 × 𝑃 resources, and the defender has 𝐷 resources. For that matter, one may use [25] to get an efficient exact solution.

Artiϧcial Intelligence 349 (2025) 104425

25

D. Mutzari, T. Deb, C. Molinaro et al.

In the case the attacker is aware of the defensive drone’s location, it could utilize this additional information to evade the defender
more effectively, and therefore is expected to cause more damage. This framework could be an interesting future work. However, if
there is concern that the defender’s utility is significantly smaller, a conclusion could be that more research and effort should be put
into preventing the attacker from gaining this information to begin with.

Knowledge of 𝐱𝑑 . In Stackelberg games, the attacker knows the defender’s committed mixed strategy and best responds to it. This
is often justified by the claim that the attacker can survey the defender’s strategies before launching an attack. In this paper, we
follow this approach. However, this assumption may seem less feasible in the context of state-dependent strategies, as the defender’s
strategy space is overwhelmingly large. Without sufficient real attacks, many states may not even occur, making it harder for an
attacker to accurately observe and infer the defender’s strategies. While we acknowledge that surveillance in our case is probably
not sufficient for the attacker to unravel the defender’s mixed strategy, assuming a stronger attacker may result in a more robust
system. The alternative approach, of attempting to model the limitation of an attacker, comes at a high risk. If the defense relies
on an attacker with certain capabilities which do not hold in reality, it can lead to severe consequences. In contrast, overestimating
the attacker’s capabilities could result in a less effective defense overall, but the damage caused will not exceed model expectations.
Indeed, we point out that at least the division of the defender into neighborhoods, and the allocation strategy into neighborhoods,
can be observed. The single-drone defensive strategy within a neighborhood is then already more compact. If S2D2 is the chosen
implementation, the attacker may be able to compute it by itself. Additionally, the attacker can gain information in other manners.
For instance, it may conduct a cyber attack or procure a captured defense drone to get the defender’s code. It may also get human
intelligence from people who work at the companies that manufacture the drones, or from an employee who developed the defense
mechanism for the drones. With all of these considerations in mind, we opted to assume full knowledge of the adversary with regard
to the mixed defender strategy.

Zero-sum games. Another alternative approach would be to assume the game is zero sum. In this case, Nash equilibrium is sufficient,
and one need not assume knowledge of the defender’s mixed strategy. On the other hand, this reduces the model’s generality compared
to our proposed general-sum setup. This is crucial, as in many cases, the objectives of the attacker and defender may not be aligned.
For instance, the attacker may care more about damaging infrastructure, while the defender may care more about civilian casualties,
or vice versa. In such scenarios, either a zero-sum based model will not be deployed at all, or alternatively, one would approximate it
to be such. Similarly to the previous point, this may result in an unrealistic model of the adversary, and in turn could cause damage
that exceeds model expectations.

Scalability. Since the defender’s strategy space appears extremely large, questions about scalability may arise. While we claim the
runtime to be polynomial with |𝑑 |, the strategy space itself is exponential with respect to the input problem size. In this paper, we
took a three-step approach to address the problem at hand. (i) First, we provided theoretical analysis and explored a theoretically
proven algorithm which is inevitably impractical. (ii) After identifying the bottlenecks, we introduced heuristics to make the algorithm
practical. These include narrowing down the strategy space |𝑑 | of the defender, as well as relaxing the conditions for our coarsening.
(iii) Finally, we extensively tested the performance of the heuristic algorithm. We acknowledge that S2D2 can be improved both in
scale and performance in future works. However, we believe that following the blueprint outlined above is a vital cornerstone.
Therefore, down the line, our theoretical results may turn out to be of greater importance than any of the three building blocks of
S2D2 (coarsening, single drone sequential sub-games, multi-drone meta-game) as instantiated in this work.

8. Conclusions

Multi-drone strikes are increasingly likely to be used to target cities. The threat actors using such techniques will include both
nation-state actors and terrorist groups.

In this paper, we have developed a realistic model to defend cities against multi-drone attacks via 4 contributions: (i) We extend
sequential SSGs involving multiple attack/defense drones with payload and battery constraints. (ii) We propose the Sequential Stack

elberg Drone Defense (S2D2) paradigm to solve the problem of minimizing damage to the city by the attacker and show detailed
theoretical results that show that under some conditions related to a novel concept called 𝛿-coarsening, S2D2 provides a strong ap

proximation algorithm for a computationally difficult problem. We prove that S2D2 outputs an approximate SSE and an upper bound
on the error, under such conditions. (iii) Experiments on a dataset of 80 famous cities compare S2D2 with a heuristic swarm-defense
algorithm, demonstrating a trade-off between runtime and defender utility. Importantly, the experiments show that even when the
𝛿-coarsening conditions do not hold, S2D2 still works effectively. (iv) Our experiments were run with real data on 80 cities using
randomly assigned utilities. But in addition, we assigned utilities to locations in 6 cities using general guidelines provided by security
experts from the US, EU, Asia, and the Middle East. Our experiments also included these 6 cities. Finally, we did a detailed case study
of one large North American city with expert input. To the best of our knowledge, past work on game-theoretic defenses of cities
against multi-drone attacks has not done that.

CRediT authorship contribution statement

Dolev Mutzari: Writing -- review & editing, Writing -- original draft, Validation, Software, Methodology, Formal analysis. Ton

moay Deb: Visualization, Software, Data curation. Cristian Molinaro: Writing -- review & editing, Formal analysis, Data curation.

Artiϧcial Intelligence 349 (2025) 104425

26

D. Mutzari, T. Deb, C. Molinaro et al.

Andrea Pugliese: Writing -- review & editing, Validation. V.S. Subrahmanian: Writing -- review & editing, Validation, Supervi

sion, Resources, Project administration, Methodology, Funding acquisition, Data curation, Conceptualization. Sarit Kraus: Writing --
review & editing, Validation, Supervision, Project administration, Methodology, Data curation.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: V.S. Subrahmanian reports financial support was provided by ARO. Sarit Kraus reports financial support was provided by
Israel Science Foundation. Sarit Kraus reports financial support was provided by EU Project TAILOR under grant 952215u. If there are
other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work is partly funded by ARO grant W911NF2320240, Italian MUR project SERICS (PE00000014), and the Israel Science
Foundation under grant 2544/24.

Data availability

The data will be available after anonymization.

References

[1] M.R. Brust, G. Danoy, P. Bouvry, D. Gashi, H. Pathak, M.P. Gonçalves, Defending against intrusion of malicious UAVs with networked uav defense swarms, in:
2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops), IEEE, 2017, pp. 103--111.

[2] D. He, G. Yang, H. Li, S. Chan, Y. Cheng, N. Guizani, An effective countermeasure against uav swarm attack, IEEE Netw. 35 (1) (2020) 380--385.

[3] Y.N. Jurn, S.A. Mahmood, J.A. Aldhaibani, Anti-drone system based different technologies: architecture, threats and challenges, in: 2021 11th IEEE International
Conference on Control System, Computing and Engineering (ICCSCE), IEEE, 2021, pp. 114--119.

[4] M.J. Guitton, Fighting the locusts: implementing military countermeasures against drones and drone swarms, Scand. J. Mil. Stud. 4 (1) (2021) 26--36.

[5] M.R. Brust, G. Danoy, D.H. Stolfi, P. Bouvry, Swarm-based counter uav defense system, Discov. Internet Things 1 (2021) 1--19.

[6] W. Chen, X. Meng, J. Liu, H. Guo, B. Mao, Countering large-scale drone swarm attack by efficient splitting, IEEE Trans. Veh. Technol. 71 (9) (2022) 9967--9979.

[7] V.U. Castrillo, A. Manco, D. Pascarella, G. Gigante, A review of counter-uas technologies for cooperative defensive teams of drones, Drones 6 (3) (2022) 65.

[8] N. Li, Z. Su, H. Ling, M. Karatas, Y. Zheng, Optimization of air defense system deployment against reconnaissance drone swarms, Complex Syst. Model. Simul.
3 (2) (2023) 102--117.

[9] D. Kar, T.H. Nguyen, F. Fang, M. Brown, A. Sinha, M. Tambe, A.X. Jiang, Trends and applications in Stackelberg security games, in: Handbook of Dynamic Game
Theory, 2017, pp. 1--47.

[10] A. Sinha, F. Fang, B. An, C. Kiekintveld, M. Tambe, Stackelberg security games: looking beyond a decade of success, in: IJCAI Conference, 2018.

[11] P. Paruchuri, M. Tambe, F. Ordóñez, S. Kraus, Security in multiagent systems by policy randomization, in: AAMAS Conference, 2006.

[12] J. Pita, R. John, R. Maheswaran, M. Tambe, S. Kraus, A robust approach to addressing human adversaries in security games, in: ECAI Conference, IOS Press,
2012.

[13] J. Pita, M. Jain, M. Tambe, F. Ordóñez, S. Kraus, Robust solutions to Stackelberg games: addressing bounded rationality and limited observations in human
cognition, Artif. Intell. 174 (15) (2010) 1142--1171.

[14] R. Lin, S. Kraus, N. Agmon, S. Barrett, P. Stone, Comparing agents’ success against people in security domains, in: Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence (AAAI), AAAI Press, 2011, pp. 485--491.

[15] T.H. Nguyen, R. Yang, A. Azaria, S. Kraus, M. Tambe, Analyzing the effectiveness of adversary modeling in security games, in: Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence (AAAI), AAAI Press, 2013, pp. 718--724.

[16] D. Mutzari, Y. Aumann, S. Kraus, Robust solutions for multi-defender Stackelberg security games, in: IJCAI, 2022.

[17] C. Kiekintveld, M. Tambe, J. Marecki, Robust Bayesian methods for Stackelberg security games, in: AAMAS Conference, 2010.

[18] F.M. Delle Fave, A.X. Jiang, Z. Yin, C. Zhang, M. Tambe, S. Kraus, J.P. Sullivan, Game-theoretic security patrolling with dynamic execution uncertainty and a
case study on a real transit system, J. Artif. Intell. Res. 50 (2014) 321--368.

[19] D. Korzhyk, V. Conitzer, R. Parr, Complexity of computing optimal Stackelberg strategies in security resource allocation games, in: AAAI Conference, 2010.

[20] A. Rosenfeld, O. Maksimov, S. Kraus, When security games hit traffic: optimal traffic enforcement under one sided uncertainty, in: Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI), IJCAI Organization, 2017, pp. 3814--3820.

[21] J. Gan, E. Elkind, S. Kraus, M. Wooldridge, Mechanism design for defense coordination in security games, in: Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), 2020, pp. 1303--1311.

[22] J. Gan, E. Elkind, S.K.M.J. Wooldridge, Defense coordination in security games: equilibrium analysis and mechanism design, Artif. Intell. 313 (2022).

[23] D. Mutzari, J. Gan, S. Kraus, Coalition formation in multi-defender security games, in: AAAI Conference, 2021.

[24] C.U. Solis, A.S. Poznyak, J.B. Clempner, Solving Stackelberg security games for multiple defenders and multiple attackers, in: Stony Brook International Conference
on Game Theory, 2015.

[25] D. Korzhyk, V. Conitzer, R. Parr, Security games with multiple attacker resources, in: IJCAI Conference, 2011.

[26] D. Kar, F. Fang, F. Delle Fave, N. Sintov, A. Sinha, A. Galstyan, B. An, M. Tambe, Learning bounded rationality models of the adversary in repeated Stackelberg
security games, Retrieved from Nanyang Technological University, http://www3.ntu.edu.sg/home/boan/papers/ALA15_Debarun.pdf, 2015.

[27] F.-L. Chiper, A. Martian, C. Vladeanu, I. Marghescu, R. Craciunescu, O. Fratu, Drone detection and defense systems: survey and a software-defined radio-based
solution, Sensors 22 (4) (2022) 1453.

[28] T. Deb, S. de Laaf, V. La Gatta, O. Lemmens, R. Lindelauf, M. van Meerten, H. Meerveld, A. Neeleman, M. Postiglione, V. Subrahmanian, A drone early warning
system (dews) for predicting threatening trajectories, IEEE Intell. Syst. (2025).

[29] L. Han, W. Song, T. Yang, Z. Tian, X. Yu, X. An, Cooperative decisions of a multi-agent system for the target-pursuit problem in manned–unmanned environment,
Electronics 12 (17) (2023) 3630.

[30] C. De Souza, R. Newbury, A. Cosgun, P. Castillo, B. Vidolov, D. Kulić, Decentralized multi-agent pursuit using deep reinforcement learning, IEEE Robot. Autom.
Lett. 6 (3) (2021) 4552--4559.

Artiϧcial Intelligence 349 (2025) 104425

27

http://refhub.elsevier.com/S0004-3702(25)00144-4/bib1586974AA37FE687249AE90B02C082BCs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib1586974AA37FE687249AE90B02C082BCs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib31083B813E696EF37E4B370677FF169Ds1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib9019F2346E921146832DAAC7A101E848s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib9019F2346E921146832DAAC7A101E848s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib4FDBCC46AD01E5177DC2EEF077C94A70s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib1BA31E2CCFBF9856EB484F2B820F9F4Fs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE4D9BF07C85E59CC38B4F2BDACCA0256s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib07D71E990FF56179FE311ECF800CE6B8s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib9ADC5063F131A6371B01B0FCD8AD6653s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib9ADC5063F131A6371B01B0FCD8AD6653s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE1A0C628EEE7FD660535DDC81CFD78C3s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE1A0C628EEE7FD660535DDC81CFD78C3s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib38295B08D77F695AFC495B2F44C60A20s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibB05AE5E5E864C9E9FA90F0061A2A8DC1s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib33A923BAF6A34A8B5497A2008472E298s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib33A923BAF6A34A8B5497A2008472E298s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib3E8678CE8048ED36619F5F5236BC3F89s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib3E8678CE8048ED36619F5F5236BC3F89s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib2C83F51088686AB0CD0C52FD2AB4B69Bs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib2C83F51088686AB0CD0C52FD2AB4B69Bs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibC65D40B001AFC4D047959EBB61F63D9Es1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibC65D40B001AFC4D047959EBB61F63D9Es1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib8458843F74542A447AF751AE54ABCA36s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibAD83E4C7A4AB21CE7C99E9D15DE86049s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibAD395B748B04B9FB4E68E59A88F1C491s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibAD395B748B04B9FB4E68E59A88F1C491s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibC26C9B2D4464971E993B9486B21356E7s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib51966BC52100DF42DBF4C2D50BD24D59s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib51966BC52100DF42DBF4C2D50BD24D59s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib163128F844A9F85621E09325B1A7FB81s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib163128F844A9F85621E09325B1A7FB81s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib57F53FCAD2C7FCB653E13BF185077C17s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib7BFFB3AB2B3B3A25ECE6C2AE43BD506Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib253422511ABF34A8814FFE48FFFB8AB2s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib253422511ABF34A8814FFE48FFFB8AB2s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibD262AAF4F7EA45563A3AEDE945A7FFB5s1
http://www3.ntu.edu.sg/home/boan/papers/ALA15_Debarun.pdf
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib8AB08BC6E83442FEA37DEDCB8B2B1D5Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib8AB08BC6E83442FEA37DEDCB8B2B1D5Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibCB602809ABA8064B46952B05D03352BEs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibCB602809ABA8064B46952B05D03352BEs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibEF774FF452FFC8CF3AA45C83EDAF3C9Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibEF774FF452FFC8CF3AA45C83EDAF3C9Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib683334BA8F07EC952EFA3D8815552DE0s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib683334BA8F07EC952EFA3D8815552DE0s1

D. Mutzari, T. Deb, C. Molinaro et al.

[31] A. Manoharan, P. Thakur, A.K. Singh, Multi-agent target defense game with learned defender to attacker assignment, in: 2023 International Conference on
Unmanned Aircraft Systems (ICUAS), IEEE, 2023, pp. 297--304.

[32] L.S. Pontryagin, On the theory of differential games, Russ. Math. Surv. 21 (4) (1966) 193.

[33] M. Chen, Z. Zhou, C.J. Tomlin, Multiplayer reach-avoid games via pairwise outcomes, IEEE Trans. Autom. Control 62 (3) (2016) 1451--1457.

[34] A. Bonato, The Game of Cops and Robbers on Graphs, American Mathematical Soc., 2011.

[35] A. Kehagias, D. Mitsche, P. Prałat, Cops and invisible robbers: the cost of drunkenness, Theor. Comput. Sci. 481 (2013) 100--120.

[36] A. Kehagias, D. Mitsche, P. Prałat, The role of visibility in pursuit/evasion games, Robotics 3 (4) (2014) 371--399.

[37] D. Dereniowski, D. Dyer, R.M. Tifenbach, B. Yang, Zero-visibility cops and robber and the pathwidth of a graph, J. Comb. Optim. 29 (2015) 541--564.

[38] T.H. Nguyen, A. Butler, H. Xu, Tackling imitative attacker deception in repeated Bayesian Stackelberg security games, in: ECAI Conference, 2020.

[39] T.H. Nguyen, A. Yadav, B. Bosanský, Y. Liang, Tackling sequential attacks in security games, in: Decision and Game Theory for Security Conference, 2019.

[40] T. Petr, B. Bosansky, T.H. Nguyen, Using one-sided partially observable stochastic games for solving zero-sum security games with sequential attacks, in: Decision
and Game Theory for Security: 11th International Conference, Proceedings, GameSec 2020, College Park, MD, USA, October 28--30, 2020, vol. 11, Springer,
2020, pp. 385--404.

[41] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, M. Tambe, Stackelberg vs. Nash in security games: an extended investigation of interchangeability, equivalence,
and uniqueness, J. Artif. Intell. Res. 41 (2011) 297--327.

[42] M. Breton, A. Alj, A. Haurie, Sequential Stackelberg equilibria in two-person games, J. Optim. Theory Appl. 59 (1988) 71--97.

[43] B. Bosanský, J. Cermak, Sequence-form algorithm for computing Stackelberg equilibria in extensive-form games, in: AAAI Conference, 2015.

[44] J. Cermak, B. Bosanský, K. Durkota, V. Lisý, C. Kiekintveld, Using correlated strategies for computing Stackelberg equilibria in extensive-form games, in: AAAI
Conference, 2016.

[45] J. Cerný, B. Bosanský, C. Kiekintveld, Incremental strategy generation for Stackelberg equilibria in extensive-form games, in: ACM Conference on Economics and
Computation, 2018.

[46] J. Karwowski, J. Mandziuk, A new approach to security games, in: ICAISC Conference, 2015.

[47] D. Vasal, Sequential decomposition of stochastic Stackelberg games, in: 2022 American Control Conference (ACC), IEEE, 2022, pp. 1266--1271.

[48] G. Leitmann, On generalized Stackelberg strategies, J. Optim. Theory Appl. 26 (4) (1978) 637--643.

[49] M. Jünger, G. Reinelt, G. Rinaldi, The traveling salesman problem, Handb. Oper. Res. Manag. Sci. 7 (1995) 225--330.

[50] K. Kerdprasop, N. Kerdprasop, P. Sattayatham, Weighted k-means for density-biased clustering, in: International Conference on Data Warehousing and Knowledge
Discovery, Springer, 2005, pp. 488--497.

[51] V.D. Angelis, Minimization of a Separable Function Subject to Linear Constraints, Princeton University Press, 1971, pp. 503--510.

[52] M. Oral, O. Kettani, A linearization procedure for quadratic and cubic mixed-integer problems, Oper. Res. 40 (1-supplement-1) (1992) S109--S116.

[53] G. Boeing, Osmnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks, Comput. Environ. Urban Syst. 65 (2017)
126--139.

Artiϧcial Intelligence 349 (2025) 104425

28

http://refhub.elsevier.com/S0004-3702(25)00144-4/bibB39F1BABA7FD67283336156F774F7FB9s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibB39F1BABA7FD67283336156F774F7FB9s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibF8B25E283C82312F23A4C7F833A703BDs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibB489A6D61311D28921DB8AD3E0866C3Fs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibCDF9F5DC01197EC7DBBD3558821B9770s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibC11CA3C3389D6021297CC63B0ABFF74Fs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib17241C9F46CAEE85674580C4E5A4A9D1s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib6798BEAACB5D482A55CF56848C0EB988s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibDA6E6FC2F16A0CABC778D6606396642Ds1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib60ACF17B068B1E0AC6B2F675796C8E76s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE358B4BABE7A122AC8CB1CFB9FC17A2Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE358B4BABE7A122AC8CB1CFB9FC17A2Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE358B4BABE7A122AC8CB1CFB9FC17A2Cs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib05929F8B12421974CA7790B901FCEBAEs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib05929F8B12421974CA7790B901FCEBAEs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib57C4B9F11E486C9624A7777585265640s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib18C144B31BCAEFAFC0C4BF9DA9ABC088s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib0960C855D723BBAC4A2D47690C834C39s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib0960C855D723BBAC4A2D47690C834C39s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE154D313F9A5DA91F90A255555DA5A1Fs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibE154D313F9A5DA91F90A255555DA5A1Fs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibEF311EE32EA57AF9633DA7343585CDDEs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib2968EC2A8671AEF50B953265B474C8DCs1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib86333898DAC98F0FB6C02620E1012752s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib0A2BDD2AB727664655032F2170C7B42Ds1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibD7FCE6831EC296533AF32C6F595A26D1s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibD7FCE6831EC296533AF32C6F595A26D1s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bib84C660276C530BCAFB4DAB5296404821s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibF34668AF6FF194C5EC21696B9CB0F716s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibAB0696B1649390920BDF4973910D5BB3s1
http://refhub.elsevier.com/S0004-3702(25)00144-4/bibAB0696B1649390920BDF4973910D5BB3s1

	A sequential Stackelberg security games approach
	1 Introduction
	1.1 Related work
	1.2 Contributions
	1.3 Organization

	2 Birdseye view of S2D2
	3 Sequential SSGs
	3.1 Defender and attacker strategies
	3.2 Mixed strategies

	4 The S2D2 algorithm
	4.1 Coarsening the graph
	4.2 Single-attacker single-defender solution
	4.3 The meta game: multi-drone solution
	4.4 Generalization of multi-resource SSGs

	5 Theoretical analysis: SSE approximation
	6 Experiments
	6.1 Setting
	6.2 Results

	7 Discussion
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

