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Introduction

Understanding beauty and aesthetics has always been of interest for humans, from
the very beginnings of human history. Many artists through the ages have invented
their own styles of capturing beauty and have produced artwork that has dazzled, and
continues to dazzle, mankind to this day. One of the difficulties of working in this
domain is that there is no exact measurement of beauty as humans perceive it. Many
artists have formulated their own idea of aesthetics, but none of them are absolute nor
do they involve an exact scale of measurement. Therefore, most regular mathematics
and computational techniques fail in this domain.

The idea of color harmony and its correlation with aesthetics is not new. One of
the oldest and most notable works in this area [1], which had a great impact, was by
Moon and Spencer in 1944. Many ideas and theories came after that work and today
this field is quite enriched. The concept of color harmony revolves around the idea
that colors maintaining a certain relation with their neighboring colors are perceived
to be more appealing to the human eye [2]. This concept is very similar to the concept
of musical notation, and is one of the few laws of art that does not vary from person to
person. Currently, one of the most commonly used basic ideas for extracting har-
monic color features (HCFs) is clustering and segmenting the colors. However, this
is a resource-hungry, soft-computational approach.

In our research, we have used mathematical and computational approaches to
provide a solution to this problem. We have used neural networks (NNs) and regres-
sion models to verify our extracted features and have demonstrated their significance
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CHAPTER 1 Differential color harmony

in real-world situations. Even with simpler regression models, i.e., linear regression,
the results are still promising. The procedures and workflow of our algorithm have
been described chronologically in the following sections.

Related works

We are not the only ones who have considered color harmony in measuring the
aesthetic beauty of an image. Other researchers have walked this path before us.
Lu et al. [3] have designed a statistical learning structure to train a color harmony
model. They used a dataset consisting of a large number of natural images. They
made Dirichlet allocation training (LDA) smoother by using the content of the
images along with the visual features. Then, the harmonic color level was estimated
based on the supervised/unsupervised model(s) that indicate the photo aesthetic
scores. In another paper, Lu et al. [4] trained an LDA-based color harmony model
that considers harmonic colors as using spatial distances.

Datta et al. [5S] have developed a system that automatically infers the aesthetic
beauty of an image using the visual content. They crowd sourced the ratings of
images. They employed classifiers using machine-learning techniques, such as sup-
port vector machine, classification trees, and linear regression, to predict a numerical
aesthetic score.

Phan et al. [6] have built statistical models that are even used in building some
practical applications. These statistical models have been trained based on the col-
oring style of a fine arts collection. The authors have also used density estimation to
determine the features of palette data, since artists usually have their own personal
coloring patterns in their creations, which result in the frequent appearance of certain
color palettes in multiple paintings of the same artist.

Amati et al. [7] have shown that there is no explicit linear dependence between
colorfulness and aesthetics; rather, correlations arise categorically for different
images: for example, “landscape,” “abstract.” As a dataset, they have compiled per-
ceptual data from a large-scale user study.

Lu et al. [8] have proposed a color harmony model based on a Bayesian frame-
work. Classical artists had already paved way using this technique unconsciously,
without adhering to any established framework. On the other hand, learning-based
models that detect the underlying patterns of a work are shown to be a possibility.
In the LDA learning process, other two-color harmony models have been used during
the training of the model.

Nishiyama et al. [9] claim that the existing harmonic color models consider sim-
ple coloring patterns that fail to assess photographs with complicated color patterns.
To resolve this challenging problem, they have built a method in which they consider
a photograph consisting of a cluster of confined regions with variation in colors that
are simpler, which has ultimately led them towards developing a method to assess the
aesthetics of a photo based on its harmonious colors. They have also improved the
classification performance by integrating blur, edges, and saliency features.



1.3 Methodology 3

1.3 Methodology

The basic principle of our research stands on the following idea: colors seem to be
harmonized to the human eye if the color shades (Fig. 1.1A) or the base color changes
(Fig. 1.1B) gradually maintain a pattern [2]. Fig. 1.1 shows three combinations of
colors: (A) gradual change of color shade, (B) gradual change of color base and
shade, and (C) no pattern in the change of colors. Looking at these three images, even
a nonartist will find Fig. 1.1A and B more appealing than Fig. 1.1C. By nature, the
human eye tends to find harmonic color “melodies” similar to music.

Commonly, artists and designers shift colors from RGB (red, green, blue) color
scale to HSV/HSL (hue, saturation, value/hue, saturation, lightness). For our
research, we selected the HSV scale. The RGB color scale states that every color
can be represented with the three base color components of red, green and blue.
In the case of HSV, in simple terms, the hue is the key component that defines
the base of a color, saturation defines the whiteness of a color, and value specifies
the blackness of a color. This color scale represents all possible colors in terms of
these three components.

According to designer and artist guidelines, a small change in the HSV/HSL color
component produces a color that maintains harmony with the original color. We have
used these facts as the base hypothesis of our research. Fig. 1.2 shows a three-
dimensional representation of RGB (Fig. 1.2A) and HSV (Fig. 1.2B) color space,
respectively.

(A) (B) (C)
FIG. 1.1

Scale of differential colors. (A) Harmonious shade, (B) harmonious hue, (C) random color
combination.
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FIG. 1.2
Three-dimensional representation of color spaces. (A) RGB [10], (B) HSV [10].
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After shifting space, we then calculated the gradient of the shifted color space.
This gradient tells us about the rate of change in color components. Next, we applied
differential operators to produce a smaller feature set that tells about the overall color
correlation in an image. Finally, we applied a machine-learning model. Details of the
feature extraction process and model design are explained in the following
subsections.

1.3.1 Extracting differential harmonic color features

This is the initial and most crucial stage of our workflow and each step has been
ordered based on performance and results (of the previous step). Shifting color spaces
from RGB to HSV is the very first step of our process. We are shifting the color space
so that a linear change in color component represents a change in color shade or base.
This is also a common process in much color analysis research [3, 5, 8], to make the
colors more aligned with how humans perceive colors. Fig. 1.3A is a sample image
and Fig. 1.3B-D are its three RGB color components, respectively. Fig. 1.3E-G are
the components of shifted HSV components.

Next, to produce a fixed-length feature vector, we have transformed the variable
size images to a 128-pixel by 128-pixel square image using interpolation. Our dataset
(described in more detail in Section 1.3.3) keeps the images in the range of
128 x 128, but they are not square images: an image can be 128 x 100 or of some
other dimensions. For regular images, the size can vary in a very large domain.
Therefore, if we do not change the size to a fixed-size image, the final features will
not have a fixed length. We have used bicubic interpolation [11]. Fig. 1.4 shows the
transformation of the sample image.

B)

.

5 Y |
E) (F) (S
FIG. 1.3

One input image and components. (A) Input image, (B) red channel, (C) green channel, (D)
blue channel, (E) hue channel in HSV, (F) saturation channel in HSV, and (G) value channel
of HSV.
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FIG. 1.4
Resized/resampled image version of 128 x 128 pixels from Fig. 1.3A.

The change of color component rate is formulated using a gradient image by com-
puting the average distance of each pixel with its surrounding eight pixels. Eq. (1.1)
has been applied to each pixel of the components to produce the gradient images:

2,2i,j#0,0cmp(x,y) —cmp(x+1,y+
sy = Y p(x,y) 8p( y+i) (i
Here x and y are the iterators of each component and cmp is the variable representing
the component matrix. Fig. 1.5 shows the gradients of each component. Fig. 1.5A
illustrates the gradient image and Fig. 1.5B-D illustrates the HSV gradient compo-
nents, respectively.

Following is the pseudocode for producing gradient images:

For p;; in Image Component:
For i from —1to 2
For j from —1 to 2
Ifi,jis not (0,0)
avg_dist:=avg_dist+(comp[p;]—comp[p;+1,p;+]j1)/8
End if
End for
End for
gra_comp|p;] = avg_dist
End for

Here, p;; is an iterator on the color component and the #j suffix represents the column
and row iterator variable. The gra_comp is the final gradient of the component for the
given component. Resulting gradients hold the information about color change, but
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FIG. 1.5

Gradients of each color component. (A) Combined gradient, (B) hue gradient, (C) saturation gradient, (D) value gradient.
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due to their higher dimensions they are problematic as features. The feature vector
has a length of 3 x 16,384 and moreover we have 5000 sample images. Regular
learning algorithms will fail to map the features and will require a long time to pro-
cess without dimensionality reduction. We could apply principal component analysis
(PCA) directly on the entire dataset, but by applying derivative and min-max normal-
ization, we are extracting a robust feature set that has the information about the
change of color in an image without much loss and can be used in any algorithm
directly. However, by doing differentiation, we are losing the detail information,
but we are only interested in the rate of change and continued differentiation is pre-
serving it without much loss.

From our research results, we have concluded that applying discrete differenti-
ation on the gradients holds the color correlation for the entire image from a lower
dimension. Eq. (1.2) is the discrete differentiation operator we have used to reduce
the dimensions. X, X», X3, X,,_1, X,,, are the elements of the feature vector, where
X is the first element and X, is the last element.

Ay =X, — X1, X5 — X, .. Xy — Xt (1.2)

This operator reduces one dimension of a series. We have calculated lower dimen-
sional 5 x 5 gradient matrices by calculating 123rd derivatives and subsequently cal-
culating 123rd derivatives on the transpose of the previously calculated matrix.
Xi—min (x)
7 max (x) — min (x) (13)
We have applied min-max normalization to normalize the results in Eq. (1.2) (using
Eq. 1.3). Fig. 1.6A—C represent differential matrices derived from each component.
Finally, we have changed the shape 5 x 5 2D matrix to a 1 x 25 1D matrix. These
final matrices are our calculated HCF vectors, which we used to train models in the
following sections. Fig. 1.7A—C represents the nonnormalized feature scores. If we
observe the original sample image (Fig. 1.4), we can see the image has a base color of
green, where the greatest part of the image is composed of shades of green (light gray
in print version), which implies the rate of change of hue is less, whereas the satu-
ration and value have a higher rate of change. Our calculated HCF also complies with
the expected result: hue has a more stable rate of change than the other two. Fig. 1.8A
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FIG. 1.6
Differential features. (A) Hue, (B) saturation, and (C) value component.
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Harmonic color features (HCF) plots: (A) hue, (B) saturation, (C) value.
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Input image and harmonic color features (HCF) plots. (A) Input image, (B) hue, (C)
saturation, (D) value.
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represents another sample image where color in the image changes more rapidly.
Fig. 1.8B-D represent their differential feature components.

Regression model design

We have applied our feature vectors on a real-world dataset and predicted an aes-
thetics score using these features. A multilayer NN model was used to train our sys-
tem. We constructed one hidden layer with a hidden layer size of 5 in our NN.
We trained the model with.45 learning rate and 500 training cycles. Combining three
components, we used 75 features as our color features. We have preprocessed the
feature set using PCA and validated our results using bootstrapping. We have taken
7 PCAs that capture 95% of variance. Fig. 1.9A shows a sample of our NN. Seven
components are the input of the neural net and the predicted score is the output of the
neuron. We used this network to produce regression values. We made a 70%—30%
split (i.e., 3500 images against 1500 images) of the dataset for training and testing,
respectively. We trained our model with validation, first training the model with
3150 images and validating with 350 images. We used the trained model to predict
the score of the 1500 test images and calculated our prediction score.

Dataset and user study

We used MIR Flicker [12] as our data source, and selected 5000 random images from
all the available categories. Next, we conducted a user study to score selected images,
with 374 participants in the survey, from whom we collected 12,748 scores on the
5000 images. The participants were given the following instruction: Rate the picture
you are seeing, where 5 is the best score and 1 is the worst score.

Fig. 1.9B shows the histogram of user score against image count. At least 2 and a
maximum of 3 users scored all the images to eliminate bias. We took the average of
the user score as our target value.

Results and analysis

After applying our model to the training data, we have calculated prediction perfor-
mance, which is listed in Table 1.1. A scatter plot of our predicted score against the
user given score has been presented in Fig. 1.10A and its density has been plotted in
Fig. 1.10B. The X axis of the scatter plot shows the user given score, the Y axis shows
the predicted scores, and the points are the 1500 predicted scores. The color scheme
of Fig. 1.10B represents the predicted score, where red is the high score and blue is
the higher score. If we observe the plot, we can notice that most of our prediction lies
in the range of the score 3 to 4.5. This is because the majority of user given scores are
within this range. We can verify this by observing Fig. 1.10B. Also, we can observe
that the lower score has a higher density from 3 on the plot, where higher score den-
sities reach towards a score of 5. From this, we can conclude that images not having a
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Table 1.1 Performance score of NN and LR.

Attributes Neural network Linear regression
Root mean squared error 1.115+0.196 0.940+0.013
Absolute error 0.868+0.170 0.761+£0.007
Relative error 33.87% +6.84% 28.37% +0.88%
Prediction average 3.615+0.017 3.609+0.013

higher score does not imply that those images do not have color harmony, but images
with the higher score have a certain level of color harmony. This insight is similar to
our result from previous work [13], where we showed that images with higher score
maintain a certain level of rule of thirds, but the opposite is not true. This finding
revalidates the findings of Mai et al. [14] in a comprehensive manner for the first
time in computer vision literature, to the best of the authors’ knowledge. Along with
our NN results in Table 1.1, we have also listed results using a linear regression (LR)
prediction model. Although LR seems to have a better performance, its result is more
biased. Its predictions lie in the range of 3.50 to 3.74, as the majority of the dataset
lies in this region, while root mean squared error (RMSE) is lower. Eq. (1.4) is the
equation for LR.

x=—0.002 * pca; —0.009 * pca, —0.006 * pca; +0.053 * pcas +0.024 * pcag
+0.027 * pca; +3.615 (1.4)

Discussion and future work

In this research, we have successfully developed a faster calculative method for
extracting harmonic color features. We also have constructed a simplified method
for perceiving beauty in images. The outcome of this research can be used not only
in the domain of predicting aesthetics but also in other domains, i.e., cognitive model
development, analysis of human perception of colors, color compositions, etc. We
plan to create a model based on the human context of perceiving beauty as our future
work. Along with this, we plan to combine features of this and our previous work [13]
and create a robust model to perceive aesthetics with greater accuracy.
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